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PKEFACE 

THIS  tract  is  intended  to  present  a  precise  account  of  the  elementary 

differential  properties  of  plane  curves.  The  matter  contained  is  in 

no  sense  new,  but  a  suitable  connected  treatment  in  the  English 

language  has  not  been  available. 

As  a  result,  a  number  of  interesting  misconceptions  are  current  in 

English  text  books.  It  is  sufficient  to  mention  two  somewhat  striking 

examples,  (a)  According  to  the  ordinary  definition  of  an  envelope,  as 

the  locus  of  the  limits  of  points  of  intersection  of  neighbouring  curves, 

a  curve  is  not  the  envelope  of  its  circles  of  curvature,  for  neighbouring 

circles  of  curvature  do  not  intersect,  (b)  The  definitions  of  an 

asymptote — (1)  a  straight  line,  the  distance  from  which  of  a  point  on 
the  curve  tends  to  zero  as  the  point  tends  to  infinity ;  (2)  the  limit  of 

a  tangent  to  the  curve,  whose  point  of  contact  tends  to  infinity — are 
not  equivalent.  The  curve  may  have  an  asymptote  according  to  the 

former  definition,  and  the  tangent  may  exist  at  every  point,  but  have 

no  limit  as  its  point  of  contact  tends  to  infinity. 

The  subjects  dealt  with,  and  the  general  method  of  treatment,  are 

similar  to  those  of  the  usual  chapters  on  geometry  in  any  Cours 

d' Analyse,  except  that  in  general  plane  curves  alone  are  considered.  At 
the  same  time  extensions  to  three  dimensions  are  made  in  a  somewhat 

arbitrary  selection  of  places,  where  the  extension  is  immediate,  and 

forms  a  natural  commentary  on  the  two  dimensional  work,  or  presents 

special  points  of  interest  (Frenet's  formulae).  To  make  such  extensions 
systematically  would  make  the  tract  too  long.  The  subject  matter 

being  wholly  classical,  no  attempt  has  been  made  to  give  full  references 

to  sources  of  information  ;  the  reader  however  is  referred  at  most  stages 

to  the  analogous  treatment  of  the  subject  in  the  Cours  or  Traite 

d' Analyse  of  de  la  Valine  Poussin,  Goursat,  Jordan  or  Picard,  works  to 
which  the  author  is  much  indebted. 
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In  general  the  functions,  which  define  the  curves  under  considera- 

tion, are  (as  usual)  assumed  to  have  as  many  continuous  differential 

coefficients  as  may  be  mentioned.  In  places,  however,  more  particularly 

at  the  beginning,  this  rule  is  deliberately  departed  from,  and  the 

greatest  generality  is  sought  for  in  the  enunciation  of  any  theorem. 

The  determination  of  the  necessary  and  sufficient  conditions  for  the 

truth  of  any  theorem  is  then  the  primary  consideration.  In  the  proofs 

of  the  elementary  theorems,  where  this  procedure  is  adopted,  it  is 

believed  that  this  treatment  will  be  found  little  more  laborious  than  any 

rigorous  treatment,  and  that  it  provides  a  connecting  link  between 

Analysis  and  more  complicated  geometrical  theorems,  in  which  insistence 

on  the  precise  necessary  conditions  becomes  tedious  and  out  of  place, 

and  suitable  sufficient  conditions  can  always  be  tacitly  assumed.  At 

an  earlier  stage  the  more  precise  formulation  of  conditions  may  be 

regarded  as  (1)  an  important  grounding  for  the  student  of  Geometry, 

and  (2)  useful  practice  for  the  student  of  Analysis. 

The  introductory  chapter  is  a  collection  of  somewhat  disconnected 

theorems  which  are  required  for  reference.  The  reader  can  omit  it, 

and  to  refer  to  it  as  it  becomes  necessary  for  the  understanding  of 

later  chapters. 

I  wish  to  express  my  great  indebtedness  to  the  Editor,  Mr  G.  H. 

Hardy,  and  also  to  Mr  J.  E.  Littlewood  and  Dr  T.  J.  I' A.  Bromwich,  for 
assistance  and  advice  in  the  preparation  of  this  tract. 

R.  H.  F. 

Octoh&r  1919. 
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CHAPTER  I 

INTRODUCTION 

§  110.  We  assume  in  this  tract  that  the  reader  is  acquainted  with 
the  ordinary  elementary  theorems  of  the  differential  and  integral 

calculus,  as  developed,  for  example,  in  Hardy's  Pui^e  Mathematics 
(2nd  Edition,  1914);  we  apply  these  theorems  to  the  geometry  of  plane 
curves.  We  shall  require  more  than  is  there  given  concerning  implicit 
functions,  especially  algebraic  functions  and  the  curves  defined  thereby. 
Such  theorems  of  this  type  as  we  require  frequently  are  quoted  with 

references  in  §  1*50.  The  more  important  special  properties  of  algebraic 
functions  are  summarized  in  §  1*60. 

We  shall  use  freely  the  symbols  ̂ ,  0,  o,  whose  use  is  now  classical, 
and  occasionally  ̂   and  >.  The  reader  who  is  not  acquainted  with 

any  of  them  will  find  the  meaning  of  f^,  0,  ̂   and  >=  explained  in 

Hardy's  tract  'Orders  of  Infinity'  {Cambridge  Mathematical  Tracts, 
No.  12).   The  definition  of  o  is  as  follows : 

If  fix)  and  g  (x)  are  any  functions  of  x,  and  g  (x)  is  positive*  fm^ 
all  sufficiently  large  values  of  x,  we  write 

f{x)  =  o{g{x)), 

ivhen  \f{x)  \  jg  {x)  ->  0 
as  x—¥  cc . 

A  similar  definition  applies  when  x  tends  to  zero,  or  any  other  finite 
limit,  instead  of  to  infinity.  The  introduction  of  o  into  Analysis  is  due 
to  Landau,  vide  Landau,  Handbuch  der  Lehre  von  der  Verteilung  der 
Primzahlen,  Vol.  i,  p.  59. 

The  symmetry  of  the  differential  notation  and  the  use  of  direction 

cosines  are  of  vital  importance  in  three-dimensional  geometry.  They 
can  be  used  with  advantage  in  two  dimensions  and  lend  themselves  at 
once  to  the  necessary  generalizations.  They  are  therefore  used  freely 
here.     It  is,  however,  important  that  the  reader  should  realise  the 

*  Alternatively,  it  will  be  convenient  for  our  purposes  to  allow  g  {x)  to  be  negative 
instead  of  positive  in  the  above  definition,  and  also  in  the  definition  of  O.  The  only 

essential  requisite  in  these  definitions  is  that  g  [x)  should  not  vanish  for  large  values 
of  X. 

F.  1 
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precise  uature  of  the  statement  made  by  a  differential  formula,  and  this 
is  frequently  emphasised. 

A  limited  selection  of  examples  is  given  at  the  ends  of  the  chapters. 
Besides  their  more  obvious  function,  these  are  intended  to  provide  a 

summary  of  some  of  the  more  important  extensions  of  the  -theorems 
proved  in  the  text.  References  or  sketches  of  a  proof  are  therefore 
given  in  such  cases,  which  should  enable  the  reader  to  complete  the 

proofs. 

§  1'20.  Plane  curves.  We  regard  a  plane  curve  as  the  locus  of 
points  satisfying  the  equations 

for  a  given  range  of  values  of  t^tQ^t^t^,  say)  for  which  <f>i  (t),  <f>2(t) 

are  continuous  single-valued  functions  of  t.  A  point  F  on  the  curve  is 
regarded  as  identified  with  a  value  of  t.  The  variable  t  is  real,  and 
oj  and  y  are  also  always  real.  We  consider  throughout  only  real  points 
and  curves. 

More  information  than  this  about  <^i  (t)  and  </)2  (t)  will  always  be 
required,  the  amount  varying  from  problem  to  problem.  We  may 
specify  conditions  to  be  satisfied  by  <^i  (t)  and  02  (0  either 

(1)  at  a  point  P,  i.e.  when  t  =  t„, 

or         (2)   in  the  neighbourhood  of  or  "near"  a  point  P,  i.e.  in  the 
neighbourhood  of  ̂oj 

or         (3)   throughout  the  interval  FQ,  i.e.  when  t^'^t^ti. 
We  say  that  the  point  F  (t)  lies  between  the  points  Qi  (ti)  and 

QaCO  0^^  *^®  curve,  when  ti<t  <t2',  also  that  the  point  Q{t)  tends  to 
F(to),  or  Q—>F,  F  and  Q  being  points  on  the  curve,  when  t—>to. 

A  particular  case  of  great  importance  occurs  when  x-t  on  y  =  t,  and 
the  curve  is  given  in  one  of  the  forms 

y=<f>^(a:),  x  =  ̂ ^{y). 

Curves  may  also  be  defined  by  implicit  functions.  We  return  to 

these  in  §  1  "SO. 
We  shall  frequently  be  concerned  with  straight  lines,  circles  and 

other  curves  which  depend  on  certain  parameters,  and  shall  study  their 
behaviour  as  the  parameters  tend  to  certain  limiting  values.  In  general, 

suppose  the  curve  is  defined  by  the  equations 

(1-21)  ^  =  <Ai(^,sA--0»  y  =  <f>^(t,a,(^.,.i 
or  by  the  equation 

(1-22)  /(^,2/,  «,  A"-)  =  0. 
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Let  a  — >  a,^,  y8  — >  /?o,  ...  and  suppose  that 

«/»2(#,  a,  ̂,  ...)->  X2(0, 

Then  we  shall  say  that  the  curve  cc  =  Xi  (Oj  ̂  =  X2  (0  ̂^  the  limit  of  the 

curve  defined  by  1"21  and  that  the  curve  g{x,  y)  =  ̂   is  the  limit  of  the 
carve  defined  by  1  '22. 

For  example  we  shall  define  the  tangent  to  any  curve  at  a  point  P 

as  the  limit  of  the  chord  PQ  as  Q-^  P,  the  word  limit  being  inter- 
preted in  the  above  sense.   The  chord  may  be 

y  =  m(e)x  +  c($), 
where  i  is  the  parameter  of  Q.    The  limit  of  this  chord  is 

y=pa^  +  d, 

where  m  (^)  — >/>,  0  (^)  — >  c?  as  ̂   — >  4-  Thus,  in  the  case  of  an  algebraic 
curve  such  as  the  above  straight  line,  whose  coefficients  depend  on  a 
parameter  or  parameters,  we  regard  as  the  limit  of  the  given  curve  that 
curve  whose  coefficients  are  the  limits  of  the  coefficients  of  the  given 
curve. 

We  shall  often  go  further  than  this  and  regard  the  curves  defined 

by  1"21  or  1"22  as  approximate  representations  of  their  limiting  curves. 
It  is  then  important  to  be  able  to  describe  shortly  the  closeness  or  order 

of  such  an  approximation.  Suppose  for  example  that  a  =  ay  +  8a,  and 
that  for  any  given  values  of  ̂  and  y 

fi'^,y,o)  =  g{x,y)-^0{haf, 

as  8a  — ►  0 ;  in  this  relation  5^  is  a  positive  integer  independent  of  x  and  y, 
while  the  constant  implied  by  the  0  may  (and  in  general  will)  depend 
essentially  on  the  choice  of  x  and  y.  Then  we  shall  say  that  the  curve 

f{x,  y,  a)  =  0,  whe7i  a  is  near  a^,  represents  the  limiting  curve  g  (x,  y)  ̂  0, 
with  an  error  0  (Sa)^.  When/(ir,  y,  a)  is  a  polynomial  in  x  and  y  with 
one  non-zero  coefficient  independent  of  a,  this  statement  is  equivalent 
to  saying  that  all  the  coefficients  of  x  and  y  in  f(x,  y,  a)  differ  from 

their  limiting  values  by  terms  of  order  (8a)«. 

§  1'30.  We  frequently  attempt  to  impose  the  minimum  conditions 
that  enable  us  to  make  a  definition  or  to  prove  a  theorem.  In  considering 

the  properties  of  the  curve  y  =f{x)  at  any  point  P  {x^  on  the  curve,  we 

shall  always  impose  the  condition  that/'  (x^)  exists*.   This  is  of  course 

*  See  §  2-10,  note. 

1—2 
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the  necessar}^  and  sufficient  condition  for  the  existence  of  a  tangent  not 
parallel  to  the  axis  of  y.  We  then  proceed  to  consider  the  properties  of 
the  curve  in  the  neighbourhood  of  P,  and  for  this  purpose  assume  in 

general  that/'  {x^  is  continuous  at  P.  In  this  case  the  curve  is  always 
rectifiahle — it  is  always  possible  to  assign  a  meaning  to  the  length  of  an 
arc  of  the  curve  in  this  neighbourhood.  We  therefore  ignore  the  question 

of  the  necessary  and  sufficient  conditions  that  a  curve  should  be  recti- 

fiahle*; a  discussion  of  this  question  would  be  out  of  place  here. 
Further  assumptions  are  then  introduced,  such  as  the  existence  or 

continuity  oif"{a:^,  etc.,  as  required  by  the  problem  discussed. 
We  may  mention  in  passing  that  the  assumption  of  the  existence  of 

/'  (x^)  implies  rather  more  than  is  at  once  apparent  from  the  definition 
of  a  differential  coefficient,  and  that  the  additional  implications  are  of 
some  geometrical  interest  (see  Note  A). 

§r40.  Choice  of  axes.  Invariant  relations.  We  shall  assume 
in  general  that  the  axes  of  coordinates  to  which  our  curves  are  referred 
are  rectangular.  It  will  usually  be  sufficiently  clear  to  the  reader  when 
a  theorem  remains  unaltered  by  permitting  the  use  of  obHque  axes. 

It  is  often  convenient,  in  the  proof  of  some  general  property  of  a 
curve,  to  simplify  the  proof  by  referring  the  curve  to  a  special  set  of 
axes,  such  as  the  tangent  and  normal  at  a  point  on  the  curve.  It  is 
therefore  important  to  be  able  to  assert  that  a  property  proved  with  a 
special  set  of  axes  is  true  of  curves  in  general,  i.e.  whatever  the  axes  of 
reference.  It  is  permissible  to  make  this  assertion  owing  to  the  invaiiance 
of  the  formal  expressions  of  lengths  and  angles  for  the  most  general 
changes  of  rectangular  axes. 

The  restriction  to  rectangular  axes  is,  of  course,  unnecessary,  but  a 
consideration  of  this  case  is  sufficient  for  the  argument.  The  general 
recta,ngular  transformation  is 

;r  =  ̂ ' cos  ̂   — y  sin  ̂   +  a, 

^  =  ̂ '  sin  ̂   +  y  cos  0-^h, 
where  a,  6,  B  are  any  constants.    It  is  easily  verified  that 

(^1  -  x^^  +  (2/1  -  y^-  -  (^1'  -  x^y  +  {y;  -  y^J. 
This  is  the  property  of  invariance  of  length.  For  the  in  variance  of  the 

(tangent  of  the)  angle  between  two  straight  lines,  it  is  easy  to  see  that 
if  the  lines  are 

y  =  mxX-\-  Ci,y  =  m^x  +  c,, 

*  See  §  2-50,  note. 
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and  they  transform  into 

y  =  mix  +  c/, 

then  
"'''-'"^'  - 1  +  Wi  ?/Z2      1  +  m^mci. 

Thus  all  the  ordinary  metrical  properties  of  curves,  which  depend  on 
the  relations  between  points  on  the  curves  themselves  and  their  tangents 
and  normals,  may  be  established  for  any  system  of  ax6s  and  asserted  to 
hold  true  in  general. 

For  example,  the  curvature  of  a  curve  is  defined  in  the  usual  way  as 

I'*  % 

where  8s  is  the  length  of  an  arc  of  the  curve,  8«^  the  angle  between  the 
tangents  at  the  ends  of  the  arc,  and  8s  and  8\f/  are  invariant  for  any 
change  of  axes.  Hence  the  above  limit,  if  it  exists  when  the  curve  is 
referred  to  one  system  of  axes,  will  exist  and  be  equal  for  all  others.  It 
is  shown  in  the  usual  way  that  the  value  of  this  limit  is 

g/(-(i'Tr This  expression  is  therefore  an  invariant  for  the  general  change  of  rect- 
angular axes,  as  may  be  directly  verified.  When  we  wish  to  prove 

properties  of  the  centre  of  curvature  of  a  point  on  a  curve,  we  naturally 
refer  the  curve  to  the  tangent  and  normal  at  the  point  considered.  The 

value  of  the  above  invariant  is  then  (d^yldx^)^^  or/"(0),  and  the  algebra 
is  greatly  simplified. 

§1*50.  Implicit  functions.  In  addition  to  the  forms  of  §1*20, 
curves  may  also  be  defined  by  implicit  functional  relations  between  the 
coordinates  x  and  y  of  the  type 

This  case  is  reduced  to  the  explicit  form  by  the  fundamental  existence 

theorem  for  implicit  functions*.  We  quote  here  the  form  most  useful 
for  our  purposes. 

Theorem  1'51.   Existence  theorem  for  implicit  functions. 
Suppose  that  F{x,  y)  is  a  function  of  the  two  real  variables  (x,  y) 

satisfying  the  conditions: 

(1)  it  is  real,  one-valued,  and  continuous,  and  possesses  a  continuous 
partial  differential  coefficient  Fy  in  the  neighbourhood  of  {x^,  y^: 

*  Hardy,  Vure  Mathematics,  2ad  Ed.,  p.  192;  Goursat,  Cours  d^ Analyse  Mathe- 
matique,  2nd  Ed.,  Vol.  i,  Chap.  in.  The  former  will  in  future  be  referred  to  as 
Hardy,  P  M.,  and  the  latter  as  Goursat,  for  shortness. 
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(2)  F{x,,y,)=0,  F,;{x,,y,)^0. 

Then,  (a)  there  exists  a  unique  function  y  =  ̂ {x)  which,  ivhen 
substituted  in  the  equation  F(x,  y)  =  0,  satisfies  it  identically  for  all 
values  of  X  in  tJie  neighhourlwod  of  x^: 

(b)  <l>  (x)  is  real  and  continuous  in  this  neighbourhood,  and  <f>  (x)  —>  y^^ 
as  x-^  x^. 

If  further  FJ  exists  and  is  continuous  in  the  neighbourhood  of 

(Xq,  yo),  the  function  y  =  4>{x)  possesses  a  continuous  differential  coeffi- 
cient in  this  neighbourhood,  and 

(1-511)  FJ  +  Fy'(dy/dx)  =  0, 
so  that 

dy/dx  =  <f>'(x)  =  -F,'/F;. 

If  further  all  the  n*^  partial  differential  coefficients  of  F  {x,  y) 
exist  and  are  continuous  in  the  neighbourhood  of  (xo,  y^,  d^yjdx'* 
exists  and  is  continuous  in  this  neighbourhood,  and  may  be  calculated  by 
the  usual  rules. 

It  may  be  noted  that  the  extensions  of  the  main  existence  theorem 

as  quoted  assume  more  than  is  required  about  F^.  In  order  that  <^  {x) 

may  have  a  diflferential  coefficient  at  Xq,  satisfying  equation  1*511, 
the  necessary  and  sufficient  extra  condition,  over  and  above  the  con- 

ditions of  the  main  theorem,  is  simply  that  F^^  exists  at  (^o.  V^'  This 
can  be  proved  by  an  easy  revision  of  the  argument  given  by  Goursat. 

More  general  existence  theorems  applying  to  n  functions  of  m 
independent  variables  are  sometimes  required,  for  example  in  the 
theory  of  contact  of  curves  and  surfaces.  In  such  cases  the  reader  is 
referred  to  Goursat*. 

Cases  of  exception.  If  Fy  (x^,  y^)  =  0  the  theorem  breaks  down,  but 

if  i^a;'  exists  and  is  continuous,  and  FJ  (xo,  yo)^0,  we  can  still  apply 
the  theorem  with  the  roles  of  x  and  y  interchanged,  and  obtain  a 

unique  real  solution  in  the  form  x  =  <t>  (y).    It  is  only  if 

■Fy'  (x„y,)  =  Il'(xo,yo)  =  0, 
that  the  breakdown  of  the  theorem  is  complete.  In  this  case  (xq,  y^)  is 
called  a  singular  point.  We  shall  assume  that  there  are  only  a  finite 
number  of  such  points  in  any  region  with  which  we  deal.  The  question 
of  the  existence  of  solutions  in  the  neighbourhood  of  such  a  point  is 

*  See  also  de  la  Valine  Poussin,  Cours  d^ Analyse  Ivfinitesimale,  Vol.  i,  p.  169. 
This  book  will  be  referred  to  in  future  as  d.l.  V.P.  for  shortness.  References  will  be 

given  to  the  3rd  Ed.  of  Vol.  i,  and  the  2nd  Ed.  of  Vol.  ii. 
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discussed  by  Goursat,  p.  102*.  We  shall  return  to  these  points  and 
their  geometrical  properties  in  Cliapter  vi. 

A  particular  choice  of  axes,  referred  to  which  the  equation  of  a 
curve  takes  a  particularly  simple  form,  is  frequently  desirable.  The 
validity  of  the  necessary  change  of  axes  to  convert  a  general  curve  into 
the  required  particular  form  may  be  established  as  follows. 

Let  us  call  for  the  moment  an  ordinary  point  on  a  curve 

(i)  y=f{^\ 

a  point  at  which/'  {x)  exists  and  is  continuous;  on  a  curve 
(ii)    w  =  <f>i{t),  y  =  4>2{t\ 

a  point  at  which  <^i'  {t\  <f>2'  (t)  exist  and  are  continuous  and  not  both 
zero ;  and  on  a  curve 

(iii)   F(x,tj)  =  0, 

a  point  at  which  FJ,  Fy  exist  and  are  continuous  and  not  both  zero. 
We  can  then  change  the  origin  to  the  point  near  which  we  require 

the  form  of  the  curve,  and  rotate  the  axes  until  in  the  new  system  of 
coordinates  (^,  r{) 

(i)   (d-n/dOo^O,  or  (ii)   (dvldt\  =  0,  or  (iii)   (Fi\  =  0, 

and  also  (ii)   (,d$/dt\  +  0,  o?-  (iii)    (Fr,'X  4=  0. 
We  thus  arrive  at  the  following  theorem. 

Theorem  1*52.  Bi/  the  cJwice  of  suitable  axes  a  curve,  in  the  neigh- 
bourhood of  an  m'dinary  point  (as  defined  above),  can  always  be  expressed 

in  thef(yrm 

y=/(^),(/(o)=/'(o)  =  o). 
After  what  precedes  this  is  obvious  in  case  (i)  and  follows  at  once 

from  1'51  in  case  (iii).  In  case  (ii)  1*51  may  be  applied  to  establish 
the  existence  of  a  function  i/'  such  that 

where  ̂   (0)  =  ̂oj  ̂ '  (^)  =^  0,  and  \\i'  (^)  is  continuous  near  ̂   =  0.   Theorem 
1  '52  then  follows  as  before. 

The  assumptions  as  to  the  nature  of  an  ordinary  point  are  more  than 

are  necessary  for  the  truth  of  Theorem  1  "52,  but  we  shall  only  require 
the  theorem  in  cases  in  which  these  assumptions  are  required  for  other 
reasons. 

§  1-60.  Algebraic  curves.  If  the  function  Fix,  y)  is  a  polynomial  in 
X  and  y,  then  y  is  said  to  be  an  algebraic  function  of  x,.  or  the  equation 

F{x,  i/)  =  0  is  said  to  define  an  algebraic  curve.    This  is  the  most  important 

*  See  also  d.l.V.P.,  Vol.  ii,  Chap.  ix. 
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case  of  an  implicit  function.    The  relevant  special  propei-ties  of  such  curves 
may  be  roughly  summarized  as  follows. 

(1)  Every  special  assumption  that  we  require  to  make  as  to  the  nature  of 

our  curve  is  always  true  if  the  curve  is  algebraic,  with  the  possible  exception  of 

a  finite  number  of  points. 

(2)  In  particular  there  are  at  most  a  finite  number  of  points  at  which 

F{x,  y)  =  F^  {.V,  y)  =  Fy'  {x,  y)  =  0, 

near  which  the  form  of  the  curve  is  not  determined  by  Theorem  l'5l.    In 
the  neighbourhood  of  any  such  point  the  form  of  the  curve  can  always  be 

determined  (see  Chapters  vi  and  vii)  by  a  suitable  extension  of  this  theorem. 

(3)  The  study  of  the  form  of  the  curve  near  infinity,  i.e.  as  ;r  — >  x  or 

y  — ->  c»  or  both,  can  always  be  reduced  by  a  suitable  substitution  to  the  study 
of  a  similar  curve  in  the  neighbourhood  of  a  finite  point. 

In  making  the  foregoing  statements  we  have  tacitly  assumed  that  F  (,v,  y) 

is  not,  for  instance,  of  the  form  {O  {x,  y)}\  where  G^  is  a  polynomial,  for  in 
such  a  case  every  point  of  the  curve  is  a  singular  point.  Such  cases  of 

exception  are  trivial  from  the  present  point  of  view  and  may  be  guarded 

against  by  restricting  ourselves  to  polynomials  which  are  irreducible.,  that  is  to 
say,  without  factors  that  are  themselves  polynomials. 

CHAPTER  II 

THE  ELEMENTARY  PROPERTIES  OF  TANGENTS  AND  NORMALS 

§  2*10.  Definition  and  existence  of  the  tangent.  Definition. 
The  tangent  to  a  curve  at  the  point  P  is  the  limit  (if  it  exists)  of  the 

straight  line  PQ^  when  Q—>P  along  the  curve. 

Theorem  2*  11.  The  necessary  and  sufficient  condition  that  the  curve 
y=f{x)  should  have  a  tangent  at  P{xq,  /(^o)),  not  parallel  to  the  axis 

of  y,  is  thatf'ix^  should  exist.     The  equation  of  the  tangent  is  then 

y  -/W  =/'  C^o)  (^  -  ̂ o)*. 
*  If  we  admit  infinite  differential  coefficients,  and  agree  that  /'  [x^)  has  the  value 

+  00  (or  -  00  )  if 

Lt    ̂ Mlli^l  =  +  00  (or  -  00  ), 

the  phrase  "not  parallel  to  the  axis  of  y"  may  be  omitted  and  the  words  "if /'(.r^) 
is  finite,  or  a;  -  a;o  =  0  if/'(Xo)  =  ±  oo  "  inserted  at  the  end  of  the  theorem. 

The  question  is  entirely  one  of  phraseology,  though  perhaps  more  caution  is 
required  if  infinite  limits  are  admitted.    We  shall  nowhere  admit  them  in  this  tract. 
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(1)  The  condition  is  necessary.  For  if  such  a  tangent  exists,  the 
line  PQ  has  a  limit  of  the  form  y^Ax  +  B.  Now,  if  Q  is  the  point 

($,/($)),  the  equation  of  P^  is 

and  therefore  Lt    IS^tzli^ 

exists,  i.e.  f  (.To)  exists. 

(2)  The  condition  is  sufficient.    For  if  /'  (^o)  exists,  then 

tends  to  a  finite  limit  as  i-^a^o,  and  therefore  PQ  has  a  limit,  not 
parallel  to  the  axis  of  ?/,  which  is  the  tangent  at  P. 

Theorem  2*12.    In  order  that  the  curve 

may  have  a  tangent  at  tlie  point  (to),  it  is  sufficient  that  <}>i  (t^)  and 

<f>^'  (^o)  should  both  exist  and  not  both  be  zero. 
The  equation  of  the  tangent  is  then 

(2-121)  (3/  -  </.,  (O)  <^/  (0  =  (^-  <^i  («)  <^2'  (#o)*. 
The  equation  of  the  chord  PQ  may  be  written 

which  has  the  required  limit  &s  t—>to,  under  the  stated  conditions. 

Theorem  2*  13.    In  order  that  the  curve 

f(x,y)  =  0 may  have  a  tangent  at  (x^,  y^),  it  is  sufficient  that  fj  and  fy  should  be 

continuous  in  the  neighbourhood  of  (^o>  2/o)  ̂'^^  ̂ ^^  ̂ ^^^  ̂ ^  ̂^^'^  ̂ ^  (^o>  2/o)- 
The  equation  of  the  tangent  is  then 

(2-131)       {x-xo)fx  (^0,  y,)  +  {y-yi)fy  fe,  yo)  =  o. 
*  A  more  useful  form  in  practice  is 

^'^  '  02'(fo)  0l'(«o)      ' or  more  shortly 

(2-123)  ITzlo^i^^ 

If  one  of  Xq  or  i/o'  is  zero,  the  equation  must  of  course  be  interpreted  to  mean  that 
the  corresponding  numerator  vanishes. 
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This  is  a  direct  consequence  of  the  Existence  Theorem  151  and 

Theorem  2"  11.  If  for  example  fy(^o,%)=^0,  the  mere  existence  of 
fx  (^o>  yo)  is  sufficient. 

§  2 '20.  The  tangent  as  the  limit  of  the  chord.  The  tangent 
may  be  the  limit  of  a  chord  of  more  general  type  than  that  used  in  the 

definition  of  §  2*10.    This  is  shown  by  the  following  theorem. 

Theorem  2  21.  If  f  {x)  is  continuous  at  ̂ o,  the  tangent  at  a^^  to  the 

curve  y=f(x)  is  the  limit  of  the  straight  line  Q1Q2  ivhen  Qj,  Q.2—>P 
along  the  curve. 

It  is  not  sufficient  here  that  /'  (^)  should  exist.  Something  more 
is  required  and  continuity  is  a  simple  and  sufficient  condition.  If  how- 

ever Qi,  Q2—>P  from  opposite  sides,  then  the  chord  Qi Q2  tends  to  the 
tangent  at  P  provided  only  that  the  tangent  exists.    See  Note  A. 

The  equation  of  the  chord  Q1Q2  is 

The  hypothesis  of  the  continuity  of  /'  {x)  at  Xq  implies  the  existence 
of  /'  {x)  at  all  neighbouring  points  to  P.  Hence  Qx  and  Q2  iiiay  be 
taken  near  enough  to  P  for  /'  {x)  to  exist  at  all  points  of  the  interval 
Xi^x-^  X2.    Therefore  by  the  mean  value  theorem 

X2  —  Xx 

But  since  /'  {x)  is  continuous  at  ̂ o)  /'  (^1  +  ̂  (^2  -  ̂ 1))  -^/'  (^0))  when 
Qu  Qi—^P,  and  the  limit  of  the  chord  is 

y  -/ W  =/'  (^0)  (^  -  ̂ 0), 
i.e.  the  tangent  at  P. 

Other  forms  of  the  equation  of  the  curve  may  be  treated  in  a  similar 
manner. 

We  shall  speak  of  a  curve  as  having  a  continuous  tangent  at  P, 

when,  as  Q—^P.  the  tangent  at  Q  tends  to  the  tangent  at  P.  It  is 
easily  seen  that  the  necessary  and  sufficient  condition  for  this  in  the 

case  of  y  =f(x)  is  that  /'  (x)  should  be  continuous  at  P,  and,  for  the 
other  two  forms,  that  sufficient  conditions  are  that  <f)i  (t)  and  <^/  (t) 

should  be  continuous,  or  that  fj  and  fy  should  be  continuous,  re- 
spectively, at  P. 

§  2-30.  Definition  and  equations  of  the  normal.  Definition. 
The  normal  to  a  curve  at  the  point  P  is  a  straight  line  through  P  at 
right  angles  to  the  tangent. 
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The  equations  of  the  normal  in  the  three  cases  studied  above  are 
respectively  (the  axes  of  coordinates  being  as  always  rectangular) 

(2-31)  /'  (^o)  {y  -/M)  +  (^  -  ̂ o)  =  0, 

(2-32)  (3/  -  <!>,  {to))  <i>^  (to)  +  (^  -  <^i  (to))  «^i'  (to)  =  0, 

(2-33) 

§  2  "40.    The  geometrical  meaning  of  differentials.    Consider 
the  curve  ^  ̂y(^) 

with  a  tangent  at  P,  the  point  (^,  17),  not  parallel  to  the  axis  of  ̂j. 

Fig.  1. 

Let  $  be  a  neighbouring  point  of  abscissa  i  +  8.r,  M  the  point  on  the 
ordinate  at  Q  where  it  cuts  the  tangent  at  F,  and  PN  a  line  through  P^ 
parallel  to  0^,  the  axis  of  .t.   Then 

QN='-hj,PN=Sj:. 
Also  the  equation  of  the  tangent  at  P  is 

y-/i$)-/' (0(^-0, 
so  that  MN -/'  ($)  8^  =  #(.r), 
and  therefore 

(2-41)  MN=^dy. 

*  This  must  be  interpreted  as  in  §  2-10  when  either  fx  i-^oi  Vo)  or  //(xq,  yo) 
vanishes. 
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Thus  the  differential  ofy  is  the  increase  of  the  ordinate  of  a  point  on  the 

tangent  coi^responding  to  an  increase  of  abscissa  ̂ x.  This  equality  holds 
equally  with  oblique  axes.  Of  course  ̂ x  may  be  an  increase  of  either 
sign,  the  increase  of  the  ordinate  being  reckoned  algebraically. 

§  2-50.  Arcs  and  their  differentials.  Any  arc  of  a  plane  curve 

which  has  a  continuous  tangent  is  rectifiable'^ ,  and  the  length  of  the  arc 
measured  from  a  point  P  to  a  point  Q  (the  coordinates  being  rectangular 
cartesians)  is  given  by 

(2-51)  s=^{l  +  [/'(-^:)]f  rf^, 

(2-52)  ^^=r{KW?  +  [<^;(0?f  ̂ ^, 
for  curves  of  the  corresponding  forms.  To  avoid  ambiguities  of  sign  it 
has  been  necessary  to  assign  the  direction  in  which  s  is  to  be  regarded 
as  increasing  along  the  curve,  when  measured  from  a  fixed  point  F.  It 

it  usually  convenient,  though  not  essential  (see  §  2*60),  to  take  this 
direction  as  the  direction  of  x  increasing  or  t  increasing,  as  has  been 

done  in  2*51  and  2 '52  above.  Taking  2 '52  and  using  differentials  we 
obtain  t 

(2-53)  ds={[<i>at)Y  +  W(t)f\^dt, 
(2-531)  {dsy  =  (dxf  +  {dyyt- 

§  2*60.  Conventions  of  sign.  We  must  now  make  certain  con- 
ventions to  avoid  the  repeated  occurrences  of  ambiguities  of  sign.  We 

have  three  positive  directions  to  assign,  namely,  the  positive  axis  of  x^ 

*  See  d.LV.P.,  Vol.  i,  pp.  303,  368,  For  the  study  of  rectifiable  curves,  more 
particularly  of  the  necessary  and  sufficient  conditions  for  rectifiability,  see  d.l.V.P., 

Vol.  I,  p.  380;  Jordan,  Vol.  i,  p.  99.  For  the  properties  of  continuous  curves  in 
general,  see  d.l.V.P.,  Vol.  i,  p.  374;  Jordan,  Vol.  i,  p.  90.  The  book  referred  to  under 

the  latter  title  is  Jordan's  Cours  d' Analyse,  3rd  Ed. 
t  By  the  usual  rule  for  differentiating  an  integral  with  a  continuous  integrand 

with  respect  to  the  upper  limit.  The  assumption  of  a  continuous  tangent  is  made 
throughout  this  section. 

ij:  Note  that  2-531  or  its  equivalent  ds={l  +  (dy/dx)'^}^  dx  is  not  the  source  of  2-52 
but  a  deduction  therefrom.  Equation  2-51  or  2-52  is  fundamental,  for  it  is  a  direct 
deduction  from  the  definition  of  the  length  of  an  arc  as  the  limit  of  an  inscribed 

polygon,  and  until  2*51  has  been  established  no  meaning  can  be  attached  to  2-531. 
The  reader  will  of  course  bear  in  mind  that  2-531  is  not  the  same  thing  as  the 

equation  (5s)- =  (5.r)2+  {8y)'^,  which  is  false  except  for  a  straight  line :  2-531  expresses 
in  the  differential  notation  the  fact  that,  as  dx,  5y  —^  0, 

(5s)2<^(5.r)2+(5y)2. 
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i.e.  the  direction  of  ̂   increasing,  the  positive  axis  of  ?/,  and  the  direction, 

clockwise  or  counter-clockwise,  in  which  an  angle  is  to  be  reckoned 
positive  when  measured  from  the  positive  axis  of  a^.  Any  two  of  these 
three  positive  directions  can  be  arbitrarily  chosen  without  introducing 
ambiguities  into  any  of  our  formulae,  but  when  this  has  been  done,  the 
third  positive  direction  cannot  be  so  chosen  if  ambiguities  are  to  be 
avoided.    We  shall  therefore  make  the  following  convention. 

(A)  The  positive  axis  of  y  makes  an  angle  +  J  tt  with  the  positive 
axis  of  X. 

With  this  convention  all  our  formulae  remain  correct  whatever 

choice  is  made  of  the  directions  in  which  two  of  the  quantities  x,  y,  and 

the  angle  are  reckoned  positive.  We  shall,  however,  in  general,  suppose 

that  all  angles  are  reckoned  positive  in  a  counter-clockwise  direction 
from  the  positive  axis  of  x.  This  is  convenient  though  unnecessary. 
When  a  concise  name  is  required,  we  shall  denote  the  positive  axes  of  x 
and  y  by  Ox  and  Oy,  and  similarly  the  negative  axes  by  Ox  and  Oy. 

We  have  now  to  assign  positive  directions  along  the  tangent  and 
normal  at  any  point  of  a  curve,  and  the  direction  of  s  increasing  along 
the  curve.  We  can  assign  arbitrarily  the  direction  of  s  increasing  along 
the  curve,  but  once  this  has  been  done,  no  further  liberty  of  choice 

remains  if  ambiguities  are  to  be  avoided.  We  make  the  following  con- 
ventions. 

(B)  The  positive  direction  of  the  tangent  is  the  direction  of  a  line 
drawn  along  the  tangent  in  the  direction  of  s  increasing. 

This  direction  will  be  spoken  of  as  the  direction  of  the  tangent  or 

simply  as  "the  tangent"  when  no  misunderstanding  can  arise. 
(C)  The  positive  direction  of  the  normal  makes  an  angle  +  Jtt  with 

^Hhe  tangent". 
This  may  be  spoken  of  as  the  direction  of  the  normal  or  simply  as 

"the  normal".  If  "the  tangent"  is  the  same  as  Ox,  then  "the  normal"* 
is  the  same  as  Oy. 

§  2'610.  Further  differential  formulae.  If  i/^t  is  the  angle 
made  by  the  tangent  with  Ox,  we  have,  in  all  cases,  with  the  above 
conventions, 

tan  if/  =  dy/dx  =/'  (x). It  follows  at  once  that 

sin  il/  =  ±  dy/ds,  cos  if/  =  ±  dx/ds, 

*  We  shall  not  in  future  emphasise  this  meaning  by  inverted  commas, 
t  This  use  of  tp  is  constant  throughout  the  rest  of  Chapters  ii  and  iii. 
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and  both  signs  must  always  be  positive"^.    Therefore 

(2-611)  g  =  cos^,       f  =  sin^, 

(2  "6 12)  dx  =  cos  ̂ ds^    dy  =  sin  if/dsf. 
If  /,  7n  I  are  the  direction  cosines  of  the  tangent,  then 

l  =  cos\J/,   m  =  sin  if/, 
dx 
ds 

-I, 

dy 

m, 

(2-613) 

(2 '6 14)  dx  =  lds,    dy  =  mds\, 

(2*615)  ds  =  Idx  +  mdyf. 
All  these  forms  express  the  same  facts  in  different  notations,  all  of 
utility.    The  figures  illustrate  the  last  sections.    The  positive  directions 

b 

//N-f 

X'
 

/7i\-f- 

Fig.  2  (a). 

of  tangent  and  normal  are  denoted  by  Pt  and  P?i  respectively.  The 
two  curves  shown,  aa  and  bb,  have  the  same  tangent  and  normal  at  P. 
It  must  always  be  remembered  that  none  of  the  formulae  of  this  section 

*  The  conventions  were  of  course  chosen  so  that  this  should  be  so. 
t  The  reader  will  bear  in  mind  that  these  differential  relations  are  exact  and  are 

not  the  same  as  the  equations 

5x  =  cos\l/8s,     5y  =  sm\l/5s, 

etc.    These  latter  are  in  fact  false  unless  the  curve  is  a  straight  line.    See  equation 

2-531,  note. 
J  This  use  of  /,  m  is  constant  throughout  the  rest  of  Chapters  ii  and  in. 
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b 

Fig.  2(6). 

are  affected  by  the  choice  of  the  direction  of  s  increasing.    We  shall 
return  to  these  formulae  when  treating  of  curvature. 

§  2*620.  Limiting  ratios  of  arcs,  chords,  and  tangents.  The 
following  theorems  deal  with  the  limiting  ratios  of  arcs,  chords  and 
tangents. 

Theorem  2 "62 1.  The  ratio  of  the  arc  and  the  coi^responding  chord 
tends  to  1  as  the  arc  tends  to  0. 

For  {psy  =  {dsy{l+o{l)), 

{hxy  +  (hyy = {dxy  (i  +  o  (i))  +  (dyy  (i  +  o  (i)), 

=  {{dxy,-{dyy}{i-^-o(\)i 
and  therefore  (psf  ̂   {hxj  +  {hj)\ 
which  latter  is  the  square  of  the  chord. 

It  is  easy  to  show  more  exactly  that,  if  f(x)  has  a  continuous 
third  differential  coefficient  Cwith  similar  conditions  for  the  other  forms 
of  curve), 

(2-622)  Arc- Chord  =0(8^)^ 
As  a  corollary  of  this  it  is  easy  to  prove  that  if  /x  is  the  greatest 

distance  between  the  arc  and  the  chord  then 

(2-623)  ix.  =  0(hs)\ 
One  further  step  shows  that  these  lengths  are  effectively  of  these 

orders,  except  for  isolated  points,  unless  the  curve  is  a  straight  line*. 
These  results  are  frequently  useful. 

The  following  result,  also  useful,  is  of  the  same  nature  as  the  fore- 
going.   We  omit  the  proof  f. 

*  See  Ex.  i,  1-3.  t  See  Ex.  i,  5. 
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Theorem  2-624.  If  PT,  QT,  are  mngents  to  the  curve  y^f{^)  at 
P  and  Q,  intersecting  at  2\  then 

(2-625)  PT+  QT=Ss  +  0  (Ssf, 

as  Q—>  P;  and,  if  also  f"  {x)  ̂ 0  at  P, 
(2-626)  PT-  QT^  0  {Ssf*. 
We  assume  a  continuous  third  differential  coefficient.  Equations 

2'625  and  2626  hold  of  course  for  any  form  of  curve,  with  a  suitable 

condition  to  replace  /"  (^r)  =t=  0.  This  condition  may  be  stated  in  the 
general  form  that  P  must  not  be  a  point  at  which  the  tangent  is 
stationary  j. 

§  2-70.  Tangents  in  polar  coordinates.  We  shall  content  our- 
selves with  considering  a  curve  of  the  form  r  =f(0),  or  one  that  can  be 

put  into  that  form  in  the  neighbourhood  of  (tq,  6^,  the  point  under  con- 
sideration. 

Theorem  2-71.  The  necessary  and  sufficient  condition  that  the  curve 
r  =f(0)  may  have  a  tangent  at  (^o,  ̂o)j  which  is  not  the  radius  vectw  to 

that  point  \,  is  that  J'  {6^  exists. 
The  equation  of  the  tangent  is  then 

(2-711)  -^"^  =  cos  (e  -  6,)  J-j^  sin  {6  -  6,). 

O  ar 

Fig.  3. 

If  the  line  QP  has  a  limit  as  Q  ->  P  which  is  not  the  line  OP,  <f> 

(see  Figure  3)  has  a  limit  which  is  not  0  or  tt  and  so  sin  <f>  has  a  non- 
zero limit.   But 

(ro  +  8r)  sin  (</>  -  SO)  -  r^  sin  <^  =  0, 

*  For  the  case  /"  {x)=0  see  Ex.  ii,  4. 

t  See  §  3-10  and  Ex.  ii,  4.  X  See  Theorem  2-11,  footnote. 
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and  therefore  as  §  — >  P,  i.e.  as  hr  and  hO  tend  to  zero, 

hr  _.       ;^  X  /sii^  ̂ ^\  /cos  <^\  /    1     \      ro(l-cos8^) 

he  ~  ̂̂ '  "^  ''^  V    S^   /  Vsin  ̂ J  Vcos  6^J  "^      8^  cos  8(9     * 
The  right-hand  side  tends  to  a  limit,  since  each  term  has  a  limit,  and 

therefore  8r/8^  has  a  limit;  i.e.  f'{p^)  exists.  Conversely,  the  above 
reasoning  may  be  reversed,  and  the  theorem  is  proved. 

To  find  the  equation  of  the  tangent  when  /'  (6)  exists,  we  proceed 
as  follows.  Let  (/?,  a)  be  the  polar  coordinates  of  the  foot  of  the  per- 

pendicular from  0  on  PQ.  Then  p  and  a  both  tend  to  finite  limits 

when  Q—>P.   The  equation  of  QP  Y  is 

(2-712)  rcos(^-a)-;i;     < 
and,  since  P  and  Q  lie  on  this  line, 

roCOs{OQ-a)=2), 

(vq  +  8r)  cos  (0^  +  BO-a)=p. 

Therefore,  in  the  limit,  p  and  a  referring  to  the  tangent, 

(2-713)  f(0,)co8(e,-a)=p,>  f 

(2-714)  /'  (^o)  cos  (^0  -  a)  -/(^o)  sin  (^o  -  a)  =  0. 

To  obtain  the  tangent  we  find,  from  2-712  and  2*713, 

f(0o)  ̂   COs(^~a)  ̂   COs(^„-a  +  ̂ -^,) 
r  cos  (^0  -  a)  COS  (^0  -  a) 

=  COS  (0  -  6,)  -  tan  {6,  -  a)  sin  {0  -  6,), 

and  SO,  by  2*714, 

(2-72)  '^^^  =  COS  (0  -  e,)  --^^^  sin  {6  -  0,). 

§  2730.  Conventions  of  sign  and  differential  formulae  in 

polar  coordinates.   We  make  the  following  conventions. 

The  initial  line  of  6  is  Ox  and  6  is  measured  positive  counter-clock- 
wise. When  the  tangent  is  continuous,  so  that  the  curve  is  rectifiable, 

s  is  so  chosen  as  to  increase  with  0.  The  angle  <^  between  the  tangent 

and  radius  vector  is  reckoned  positive  counter-clockwise  from  the  positive 

radius  vector*  to  the  positive  direction  of  the  tangent.  We  then  have 
in  all  cases 

(2-731)  i/^  =  ̂   +  <^,  (Mod.  27r). 

*  The  positive  radius  vector  is  to  mean  the  direction  of  an  arm  drawn  from  O 
making  an  angle  +  6  with  the  initial  line  Ox.  It  must  be  remembered  that  negative 
values  of  r  have  to  be  allowed  for. 

F.  2 
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The  figures  4  (a)  and  4  {b)  illustrate  this  equation. 
a 

Fig.  4(a).  Fig.  4(&). 

Referring  to  Figures  4  and  the  proof  of  the  last  theorem  we  see  that 

This  formula  is  perfectly  general,  so  that  we  have  in  all  cases  the 
important  formula 

(2-732)  **"■*=?• 
To  obtain  a  formula  for  the  differential  of  the  arc,  suitable  for  polar 

coordinates,  we  have  in  all  cases 

x  =  r  cos  6,  y  =  r  sin  6, 
and  therefore  _ 

dec  =  dr  cos  6-rdB  sin  ̂ , 

dy  =  d/r  sin  6  +>  dd  cos  6 ; 

{dsy  =  {dxy  +  {dyy  =  {dry  +  r''  {d6)\ 
(2-733)       ds  =  ±  {{dry  +  r^  {dOy}^  =  +  {r'  +  {dr/dOy}^  dO, 

We  have  also  in  all  cases 

/      ̂  . N  rd^      '     ,^   dr  . 
(2734)  ^^Sln</>^  ̂   =  cos<^. 

*  Note  that  <f>  can  only  be  greater  than  tt  if  r  is  negative. 
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§  2*80.  Concavity  and  convexity.  Consider  a  curve  given  by 
the  equation  y  =f{x)  in  rectangular  or  oblique  coordinates,  and  a  point 

F  on  the  curve  where  /'  {x)  exists,  i.e.  where  the  curve  has  a  tangent 
not  parallel  to  the  axis  of  y.  There  are  two  sides  to  this  tangent, 

which  are  distinguished  by  the  facts  that  on  one  side  ?/-^+  co  along 
any  line  parallel  to  the  y-axis,  while  on  the  other  y  — >  -  oo .  We  shall  call 
the  side  on  which  ?/  — >  +  oc  the  upper  side,  and  the  side  on  which 
?/  — ►  -  X  the  lower  side,  of  this  line  (the  tangent).  If  the  curve  lies 
entirely  on  one  side  of  the  tangent  in  the  neighbourhood  of  P,  it  is  said  to 

be  concave  upwards  or  convex  upwards  at  P*  according  as  it  lies 
on  the  upper  or  the  lower  side  of  the  tangent  in  the  neighbourhood  of  P. 

Theorem  2 '81.  The  curve  y  =f{x\  for  which  f  {x)  possesses  a  con- 
tinuous second  differential  coefficient  at  P,  is  concave  {convex)  upwards  at 

/"(^)>0(<0). 

The  curve  will  be  concave  or  convex  upwards  (see  §2*40)  according 
as  ̂ y  -  dy  is  positive  or  negative  for  all  sufficiently  small  values  of  hx 

of  either  sign.    But,  by  Taylor's  theorem, 

(2-811)  hj-dy  =  \(hxff"{x  +  e^x),  (0<^<1). 

As/"  {x)  is  continuous,  the  theorem  follows  at  once. 
A  curve  y=f{x)  is  said  to  be  concave  (convex)  upwards  throughout 

the  interval  ̂ o  ̂   ̂   ̂   ̂i ,  if  every  point  (excluding  the  end  points)  of  any 
arc  of  the  curve  in  this  interval  lies  below  (above)  the  corresponding  chord. 

This  is  equivalent  to  the"  statement  that  the  curve   is   concave 
(convex)  upwards  throughout  the  interval,  if 

(2-82)  /(^i)+/(«-2/(«>0(<0) 
for  all  values  of  ̂i,  ̂2,  4,  such  that 

^0  ̂   ̂1  <  ̂2  <  4  ̂  ̂1 . 

It  is  easily  verified  that,  if  /"  (x)  is  continuous  throughout  the 
interval,  2  "82  is  equivalent  to  the  condition 

(2-821)  /"  {x)  >  0  (<  0),  (^0  ̂  ̂'  ̂   ̂ i> 

It  follows  at  once  by  comparison  of  2*811  and  2'821  that  if  such  a 
curve  is  concave  {convex)  upwards  throughout  an  interval  it  is  concave 
{convex)  upwards  at  every  point  of  the  interval  and  conversely. 

*  Alternatively,  convex  downwards  and  concave  downwards  respectively.  It 

should  be  remembered  that  "upwards"  is  used  simply  to  denote  the  direction  in 
which  y  — y  +  co..  This  is  because  the  positive  axis  of  y  is  usually  so  drawn,  but  the 

word  ' '  upwards  "  must  be  applied  in  accordance  with  the  above  definition  whatever 
the  direction  actually  chosen  for  the  positive  axis  of  y. 

2—2 
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Curves  that  are  concave  (convex)  upwards  throughout  an  interval 

are  of  considerable  importance  in  analysis;  their  properties  can  how- 

ever be  discussed  without  any  hypothesis  as  to  the  existence  of  /"  {x). 
Their  further  treatment  is  out  of  place  here*. 

§2*90.  Points  of  inflexion.  Definition,  ̂   point  of  inflexion 
is  a  point  at  which  the  curve  crosses  its  tangent. 

For  the  curve  «^  =/(^),  with  a  continuous/"  {sc),  we  have 

^-dy  =  If"  {x  +  Shx)  {hx)\     (0  <  ̂  <  1). 
In  order  that  x  may  be  a  point  of  inflexion  for  such  a  curve,  it  is  necessary 

and  sufficient  that  h^y-  dy  should  change  sign  with  hx,  i.e.  that 
f"{x  +  ti) 

should  change  sign  with  /x.  Hence  a  point  of  inflexion  is  a  root  off"  (x)  =  0 
at  which  f"  (x)  changes  sig?i,  and  conversely.  A  sufficient  condition  that 
f"  (x)  should  change  sign  is  that,  if /<">  (x)  is  the  first  differential  coeffi- 

cient not  vanishing  with/"  (x),  n  should  be  odd.   For  we  have 

Sy-dy  =  ̂J^f^'^^(x+eSx),     (0<0<1). 
Developments  of  this  nature  belong  more  properly  to  the  theory  of 
contact. 

It  must  be  remembered,  however,  that  a  curve  may  have  a  point  of 

inflexion  at  a  point  at  which  the  tangent  is  parallel  to  the  ?/-axis, 

and  at  such  a  point  /"  (x)  does  not  exist.  To  avoid  this  case  of  ex- 

ception, we  may  say  that,  for  a  curve  for  which  one  at  least  of  d^y/dx"^ 
and  d^xjdy^  exists  and  is  continuous,  the  points  of  inffection  are  the 
points  at  which  one  at  least  of  d^yjdaP^  and  d^xfdy^  vanishes  and  changes 
sign. 

Consider  now  the  curve 

for  which  <^i"  (f),  <^2"  (0  ̂^"6  continuous.    The  equation  of  the  tangent  at 

^0  is  {x  -  </>,  (O)  <f>.;  it,)  -(y-<t>.  (h))  <t>;  it,)  ̂  0. 

The  perpendicular  distance  of  (^,  y\  a  point  on  the  curve,  from  the 
tangent  is  algebraically  proportional  to 

(01  (0  -  </>!  (^o))  <^/  (^o)  -  (</>2  (0  -  </>2  (#o))  <t>^  (t,) 
[t-t,y 

<^r(^o  +  /^)      i>2"{t,  +  tx) 
<f>^(to)            0/(0 

*  See  d.l 
V.P.,  Vol.  I,  pp.  285-291. 
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where  fj.  =  0(t-to)  and   0<^<1.     The   curve   therefore  crosses  the 
tangent  if 

</>l'(0       <^2'(^o) 

vanishes  and  changes  sign  Sit  t  ̂ t^. 

§  2-910.  Concavity,  convexity  and  points  of  inflexion  in 
polar  coordinates.  The  property  of  being  concave  or  convex  to  a  point 

may  be  defined  in  a  similar  manner  to  the  property  of  the  being  con- 
cave or  convex  upwards.  If  the  curve  lies  entirely  on  one  side  of  the 

tangent  at  P,  and  Q  is  a  point  not  lying  on  the  tangent  at  P,  we  say 

that  t/ie  curve  is  concave  (convex)  at  P  to  the  point  Q  accm^ding  as  the 
curve  near  P  lies  on  the  same  {opposite)  side  of  the  tangent  at  P  as  the 
point  Q. 

Take  the  point  Q  for  the  origin  of  polar  coordinates,  and  suppose 

that  the  curve  is  r  =/(^),  and  that/"(^)  is  continuous.  The  equation 
of  the  tangent  is 

•^  =  cos(e-e.)-'^»)sin(e-e.). 
The  curve  will  be  concave  (convex)  to  the  origin  if 

•^^  -  cos  {6  -  e„)  +'^)  sin  (e  -  So)  >  0  (<  0), 
when  1 S  -  fl„  I  is  small.  This  condition  reduces  to 

(fm'  +  2  (/'  (e,)r  -/{«,)/"  ie,)  >  0  (<  0). 
In  the  same  way  the  condition  for  a  point  of  inflexion  for  such  a  curve 

is  that  (/(g)).  ̂   2  (/■  (e)y  -/(e)/"  (O) 
should  vanish  and  change  sign  at  0  =  0q. 

Much  of  what  proceeds  takes  a  simpler  form  if  the  curve  is  ex- 

pressed as  u  =/(0), 

where  u  =  1/r.   The  last  expression  in  the  condition  for  an  inflexion  is 

then  replaced  by  y  (^^^  +y"  (^^y 

EXAMPLES  I 

(1)   Prove  that  the  /x  of  §  2-620  satisfies  the  relation 

for  the  curve  3/ =/ (a^),  and  deduce  that  fi  =  o{8xY  implies  that  the  curve  is  a 
straight  line. 

[At  the  point  of  greatest  distance  between  arc  and  chord,  the  tangent 
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must  be  parallel  to  the  chord.    Hence  take  the  tangent  and  normal  as  axes 

and  consider  the  intersections  of  y=f{x)     (/(0)=/'  (0)  =  0)  and  y  =  /i.] 

(2)  Taking  x=f{t\  y=g  {t)  for  the  curve  and  writing 
^'={f'{t)Y+{9\t))\ 

prove  that  arc  -  chord  <^  ̂-^3  {g"  f  -f"  g'f 

=  {dsfl24pK  (see  3-132) 
Deduce  that  arc  -  chord  =  0  {8sf 

implies  that  the  curve  is  a  straight  line. 

[We  have  d  (arc)=  f  K/'(0)''+(^(0)'}  dt, 

8  (chord)  =  {(/(^+SO  -f{t)f  +  {9  {t  +  ht)-g{t)f]^. 

Expand  by  Taylor's  theorem  in  powers  of  bt  as  far  as  {Uy,  and  the  result 

follows.      If  (arc  -  chord)  =  0  {bt)\  '  then  /"//' = g"/g'.     Integrating,  /' = Ag'y 
f=Ag+B,  which  defines  a  straight  line.] 

(3)  Deduce  fi=0  (ds^  directly  from 

arc  -  chord  =  0  {fis)\ 

[Establish  and  use  the  fact  that 

/i2<^[(arc)2-(chord)2).] 

(4)  Using  polar  coordinates,  prove  that,  \if'{6)  is  continuous  at  ̂   =  ̂0)  ̂ be 
tangent  is  the  limit  of  the  chord  Q^Q2  as  $1,  ̂ 2— >^  (^"o*  ̂ o)- 

[Combine  the  proofs  of  2*71  and  2-21.] 

(5)  With  the  notation  of  Theorem  2*624  prove  that,  in  order  that 

PTjQT—^  1,  it  is  sufficient  that/"  {x)  should  be  continuous  and  not  zero  at  P. 
[Take  the  tangent  and  normal  as  axes,  and  the  curve  as 

y=/(^),    (/(0)=/'(0)=0). 

The  tangent  at  x  is  given  by  2*11.   Find  the  coordinates  of  T.   Theorem  2-624 

itself  may  be  established  similarly.     Note  that  the  condition   f"  {x)^0  is 
invariant,  §  1  -40.] 

(6)  Three  neighbouring  tangents  are  drawn  to  a  curve.  If  bsi ,  bs^  be  the 

lengths  of  the  arcs  between  the  points  of  contact  taken  in  order  along  the 

curve,  §>//•  the  angle  between  the  extreme  tangents,  and  A  the  area  of  the  en- 
closed triangle,  then 

It  is  assumed  that  the  points  of  contact  tend  to  a  point  at  which/" (.^')  is 
continuous  and  not  zero. 

[The  lengths  of  the  two  sides  including  the  angle  8v/r  are  asymptotically 

equivalent  to  \bsi  and  \bs2,  respectively.  This  follows  at  once  from  Exs.  3 
and  5.] 



THE  ELEMENTARY  PROPERTIES  OF  TANGENTS  AND  NORMALS   23 

(7)  Prove  geometrically  that,  if  PT  the  tangent  at  P  exists,  then  the 

chord  QiQ'i  tends  to  the  tangent  at  P  as  (^j,  Qi—^P  from  opposite  sides. 

Show  where  the  proof  fails  when  ̂ i,  Q.^—^P'iw.  any  manner. 
Show  that  if  PQ,^ ,  PQi  are  equal  and  opposite  arcs,  and /'"  {x)  exists  at  P, 

the  chord  ̂ ^Q^  represents  the  tangent  at  P  with  an  error  0  {hsf;  and  that  some 

condition  of  equality  is  essential. 

[The  angle  between  PjP  and  QxQ,^.  is  less  than  the  angle  between  PT  and 

P^i.    Hence  ̂ i§2  tends  to  parallelism  with  PT^  etc.] 

(8)   Define  a  tangent  of  the  twisted  curve 

and  obtain  its  equations  in  the  forms 

(0, 

X  —  Xq 

dy 

dx  dy  dz 

If  ̂1,  Wj,  iix  are  the  direction  cosines  of  the  tangent,  prove  that 

dx=lids,  dy  =  mids,  dz=7iids. 

[d.l.V.P.,  Vol.  I,  pp.  325-331.] 

(9)  The  osculating  plane  of  a  twisted  curve  being  defined  as  the  limit  of  the 

plane  PQ1Q2  when  ̂ 1  and  Q2  tend  to  P  along  the  curve,  obtain  its  equation 
in  the  forms 

=0. 

?-^o 
y-yo 

-s-^0 

=  0, 

X-Xq 

y-yo 
z—z 

<t>l 

4)2 

03
' 

dx 

dy 

dz 

01
" 

02
" 

03
" 

d\v 

dhj 

dh 
Prove  that  the  osculating  plane  is  the  limit  of 

(a)  a  plane  through  the  tangent  at  P  and  the  chord  PQ, 

(/3)   a  plane  through  the  tangent  at  P  and  parallel  to  the  tangent  at  Q. 

Alternatively,  show  that  the  angle  between  the  normal  to  the  osculating  jjlanc 

at  P  and  the  tangent  at  ̂   is  ̂ tt  +  0  (§«),  if  0i"  etc.  exist  at  P,  and  is  W  +  0  {bsf 
if  0i"'  etc.  exist  at  P. 

[d.lV.P.,  Vol.  I,  pp.  335-337.] 

(10)  If  PQi,  PQ2  are  equal  and  opposite  arcs  bs,  prove  that  under  suitable 

conditions  the  plane  PQy  Q^  represents  the  osculating  plane  at  P  with  an 

error  0  {hsf,  but  that  if  the  arcs  are  not  equal  the  error  will  usually  be  0  {8s). 

(11)  The  line  of  intersection  of  the  osculating  plane  at  P  with  the  oscu- 

lating plane  at  Q  tends  to  the  tangent  at  P  as  ̂ — >  P. 

[d.l.V.P.,  Vol.  I,  p.  346:  or  geometrically,  using  Ex.  10.] 
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CHAPTER   III 

THE  CURVATURE  OF  PLANE  CURVES 

§  3*10.  Curvature.  The  idea  of  curvature  is  introduced  to  afford 
a  measure  of  the  rate  at  which  the  tangent  is  turning  as  the  point  of 
contact  moves  along  the  curve.  Suppose  that  PQ  are  two  points  on  any 
rectifiable  curve  which  has  a  tangent  at  every  point  of  the  arc  PQ,  hs 
the  length  of  the  arc  PQ,  and  ̂ \p  the  angle  between  the  tangents  at  P 
and  Q.   Then  Si///8s  is  called  the  mean  curvature  of  the  arc  PQ,  and 

^ Lt 

hs' 

if  it  exists,  is  called  the  curvature  at  P.    If  this  limit  is  denoted  by  1/p, 

p  is  called  the  radius  of  curvature  at  P*. 
We  shall  find  in  practice  that  it  is  necessary  to  attach  a  sign  to  the 

mean  curvature,  curvature,  and  radius  of  curvature.  Consider  the  case 
of  two  equal  circles  touching  externally  at  P.     The  mean  curvatures  of 

Fig.  5. 

the  equal  arcs  P§i,  P§2  are,  as  at  present  defined,  equal,  though  the 
tangents  turn  in  opposite  directions  as  the  points  of  contact  go  from  P 
to  Qi  and  Qi.  To  take  account  of  this  we  introduce  the  following 
definitions. 

*  If  the  curvature  at  P  is  zero,  there  is  no  radius  of  curvature  or  "an  infinite 

radius  of  curvature"  according  to  choice. 
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Definitions.  With  the  conventions  of%  2*60,  the  mean  curvature 
of  the  arc  PQ  is  defined  as 

tJie  arc  s  being  measured  from  any  convenient  jmnt  on  the  curve,  and  the 
curvature  at  P  is  defined  as 

Lt    (ypQ-^p)/(sQ-sp), 

ffthis  limit  exists. 
The  radius  of  curvature  at  P  is  the  reciprocal  of  the  curvature^ 

and  is  usually  denoted  by  p. 
The  centre  of  curvature  at  P  is  a  point  C  on  the  nwmal  at  P 

such  that  PC  =  p*. 
The  circle  of  curvature  at  P  is  a  ciixle  with  centre  C  and  radius 

We  find  in  all  cases  that  the  coordinates  (Jl,  F)  of  C  satisfy 

(311)  Jr=a:-pmnf/,    F=i/  +  pcosi/^; 

or,  if  (/',  m')  are  the  direction  cosines  of  the  positive  normal, 

(3-12)  X=iv  +  l'p,    Y  =  y  +  m'p. 

Theorem  3*13.  The  necessary  and  sufficient  condition  that  the  curve 
y  =f{£c)  should  have  a  definite  curvature  at  any  point  x,  where  the  tangent 

is  not  parallel  to  Oy,  is  thatf"{x)  should  exist.  The  curvature  l/p  is  then 
given  by 

(3-131)  -  -  -  -Q^) — ,. 
p  {i  +  (/(^))r 

(1)  The  condition  is  necessary.  For  in  order  that  i/^p  and  if/q  may 
exist,  it  is  necessary  that  the  curve  should  have  a  tangent  in  the  neigh- 

bourhood of  P;  and  in  order  that  ht(if/Q  —  i(/p)/(sQ-sp)  may  exist  it  is 
necessary  that  if/Q  — >  i/^p,  i.e.  that  ij/  should  be  continuous  at  P.    As 

(3-1311)  tan./^=/(^),    (^=^i^), 

f'(x)  must  be  continuous  at  P. 
If  Q  is  the  point  (x  +  8x,  y  +  8y), 

ss=r^"'{i+(/'(«)=}*rff- 
Jx 

Since /'(^)  is  continuous  at  ̂   =  ̂ , 

{l  +  (/(«)f  =  {l  +  (/W)-f +  ̂1), 
8s  =  8x{l  +  (f(x)f}^  +  o(Sx). 

*  Of  course  with  due  regard  to  the  sign  of  p  and  the  positive  direction  of  the 
normal  Pn.    If  p  is  positive  C  lies  on  the  positive  normal  Pn;  it  p  is  negative  C  lies 

on  Pn'. 
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Therefore  Lt    ̂   =  {1  +  (/'(^))'}~^  +  0. 
Sx—^O  OS 

Also  8i};/8s  =  (8xf;/8a^)  x  (Bx/Ss), 

and  therefore,  as  Sk}//8s  has  a  limit,  and  8a^/8s  a  non-zero  limit,  as  SeZ--^  0, 
Si/a/8^  must  have  a  limit.  But  applying  the  mean  value  theorem  to 
3  1311  we  have 

8.Asec^(i/^  +  ̂'8^)-/(^  +  S^)-/(.r),     (0<^'<1), 

But  cos''  (if/  +  e'SiJ/)  has  the  non-zero  limit  (1  +  {/'(^)}')"\  so  that 

must  have  a  limit,  i.e.  f'{x)  must  exist. 

(2)   Conversely,  the  above  reasoning  may  be  reversed,  and  \if'{x) 
exists,  then 

«!_    /» 

so  that  Lt    ̂   =    Lt    K^  X     Lt    J- ; 

and  finally 1        /'W     . 

At  points  at  which  d^lds  =  0,  the  curve  is  said  to  have  a  stationary 

tangent.  It  is  easy  to  see  that,  if  ̂o  is  such  a  point,  f"(iPo)  =  0  provided 
/"(^o)  exists.  At  all  points  of  inflexion,  therefore,  at  which /"(^)  exists, 
the  curve  has  a  stationary  tangent,  but  the  converse  is  not  true,  for  at 
a  point  of  stationary  tangent  the  curve  may  not  cross  its  tangent.  The 
further  consideration  of  such  points  belongs  more  properly  to  the  theory 
of  singular  points. 

Other  formulae  for  the  curvature  1/p  are 

(3132) 

iien  the 

(3-133) 

P        W^<j>^')^ 
when  the  curve  is  ̂  =  <^i(0>  V  =  ̂ ^2(0  j  ̂ ^^ 

1     _    _  Fx^'  Fy^  —   2F:^'  Fx    Fy     4-   Fyy"  Fx"^ 
P~  (FJ-'+Fy'^f 

*  If  Q— >P  from  the  right  (left)  then  f"(x)  need  not  exist,  but  it  is  necessary 

and  sufficient  that/'(;r)  should  have  a  differential  coefficient  on  the  right  (left). 
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when  the  curve  is  F{x^  y)  =  0.  These  are  direct  deductions  from  (3'131) 
and  the  theorems  of  the  differential  calculus.  The  proofs  may  be  left  to 
the  reader. 

§  3  "20.  Properties  of  the  centre  of  curvature.  The  centre  of 
curvature  C  has  a  large  number  of  properties  many  of  which  give 

rise  to  alternative  definitions.  These  are  contained  in  the  following- 
theorems. 

Theorem  3 '21.   A  curve  is  always  concaye  to  its  centre  of  curvature. 
The  proof  of  this  theorem  is  left  to  the  reader. 

Theorem  3*22.  If  the  normal  at  Q  cuts  the  nm'mal  at  P  in  T,  and 
C  the  centre  of  curvature  at  P  exists,  then  r—>Cas  Q—>  P. 

Take  as  axes  of  coordinates  the  tangent  and  normal  to  the  curve  at 

P.  By  §  1*40  this  does  not  affect  the  generality  of  the  argument.  Then, 
by  Theorem  1"52,  the  equation  of  a  sufficiently  small  arc  of  the  curve 
containing  P  can  be  put  in  the  form 

y=/W,   (kl<8), 

where  /'  (0)  =  0  and  /"  (0)  exists  and  is  not  zero  *.  The  coordinates  of  C 

are  (0,  p)  or  (0,  l//"(0)).   The  equation  of  the  normal  at  Q(,i,f(i))  is 

which  cuts  x  =  0  where 

y=/(f) +  !//'(«• 
This  is  the  ordinate  of  r.  As  Q-*P,$^ 0, /(I) -♦  0,  and 

f//-'(f) = (i-o)/(f(i)  -/(O))  ̂   i//"(o) 

by  definition,  since /"(O)  exists  and  is  not  zero.   Hence  V  —^C. 

Theorem  3 '23.  (A)  If  the  rm^malat  Qi  cuts  the  normal  at  Q^  in  r, 
and  C  the  centre  of  curvature  at  P  exists,  then  T  —>  C  as  Qx—>P  and 
Q2  — >  P,  if  Qi  and-  Q2  are  always  on  opposite  sides  of  P. 

(B)  But  if  Qx—^ P  and  Q^—^P  in  any  manner,  V  need  not  tend  to 
C  unless  p  is  continuous  at  P. 

(A)  Let  ftr  cut  PC  in  T^,  Q^V  cut  PC  in  T,^;  then,  if  Qi  and  Q^  are 
always  on  opposite  sides  of  P,  T  cannot  lie  on  QiTj^  and  Q^T.i  or  on  both 
QiTj  and  §2^2  produced;  it  can  only  lie  on  one  of  them  and  on  the  other 
produced,  as  in  the  figure.  It  is  true  that  r,  Tj,  To  can  all  coincide,  but 

this  will  not  aff'ect  the  succeeding  argument.   As  ftTQa— »0,  T^TTz  is 

*  The  existence  of  C  implies  that  C  is  a  finite  point  according  to  our  usage. 
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ultimately  greater  than  Jtt,  and  therefore  T  lies  inside  a  circle  on  T^T^ 

as  diameter.  But  V^—>C,  Tg ->  (7  as  Qi—>P,  Q2—>P;  it  therefore 
follows  that  r  -^  (7  as  Qi  and  §2  tend  to  P  from  opposite  sides. 

P  Q2 

Fig.  6  (a). 

(B)  The  preceding  argument  breaks  down  here.  But  if  p  is  continuous 
at  P,  there  must  exist  a  centre  of  curvature  Ci  at  Qi  if  Qi  is  sufficiently 
near  P.  By  the  preceding  reasoning,  if  Qi  is  the  middle  point  of  the 

three  Q2,  Qi,  P,  then  r,  T„T^^  Cj  as  §2  ->  §1 ,  P  ->  $1 ,  ft  remaining 
fixed.  In  other  words,  given  c  we  can  find  a  number  81  such  that  TCi  <  c 

provided  only  Q2Q1  <  81,  PQi  <  S^.  But  since  p  is  continuous  at  P,  Ci—*C 
as  Qi  — >  P,  or  in  other  words  there  exists  a  number  8^  such  that  C-^C  <€ 
if  only  QiP<82.  Hence  there  exists  a  number  8  (the  lesser  of  81  and  82) 

such  that  CT  <  2e  if  only  Q,P  <  8,  Q^P  <  8.  In  other  words  r  -^  (7  as 
required. 
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On  the  other  hand  it  is  possible  to  construct  cases  in  which,  if  p  is 

not  continuous  at  P,  r  does  not  tend  to  (7as  $i,  §2— >^  in  a  suitable 
manner. 

This  theorem  is  an  example  of  the  general  principle  explained  in 

Note  A  to  §  1  '30  of  the  Introduction. 

Theorem  3*24.  If  a  circle  whose  centre  is  0  cut*  a  regular  arc  of 
any  curve  in  two  points  Qi,  Q^j  then  thei'e  exists  a  point  P  on  the  curve 
between^  Qi  and  Q^  such  that  OF  is  a  normal  to  the  curve. 

Fig.  7. 

By  a  ''regular"  arc  we  mean  an  arc  along  which  the  curve  can  be 
put  in  the  general  form 

where  </>i'(0,  ̂ ^{t)  exist,  and  are  not  both  zero,  at  Qi,  Q^  and  all  points of  the  arc  between. 

We  have,  if  0  is  the  point  (a,  h),  and  P  any  point  on  the  arc, 

oi^^{a-ut)y^(p-ut)y\ 
therefore  OP^  is  a  continuous  function  of  t  while  P  lies  on  the  arc  QiQ^, 
possessing  everywhere  a  difterential  coefficient 

and  taking  the  same  value  {E^  say)  both  at  Qx  and  Qo.    Therefore  by 

*  Nothing  prevents  the  curve  and  circle  from  touching  at  one  or  both  of  Qi 
and  Q2' 

t  I.e.  a  value  of  t  such  that  ti<t<t2  if  «i  and  ̂ 2  are  the  parameters  of  the  points 

QuQ'i- 
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Rolle's  Theorem,  there  exists  a  point  P  between  Qx  and  Q^*  such  that 

j^(OI^)  =  0,  i.e.  such  that 

This  is  satisfied  at  any  point  at  which  <^i'  and  <^o'  both  vanish.  But  if 
as  we  have  presupposed  they  do  not,  it  is  the  condition  that  OP  is 
normal  to  the  curve  at  the  point  P  as  required. 

We  can  now  prove  at  once  two  more  theorems  embodying  possible 
definitions  of  C. 

Theorem  3*25.  If  a  circle  centre  0  be  drawn  touching  the  curve  at 
P  and  cutting  it  at  Q,  and  if  G  the  centre  of  curvature  at  P  exists^  then 

0-^CasQ-^P. 

Since  C  exists,  the  conditions  of  Theorem  3*24  are  satisfied  when  Q 
is  sufficiently  close  to  P.  Therefore  there  exists  a  point  X  between  Q 

and  P  such  that  OX  is  normal  to  the  curve.  As  Q-^P,  X—^P,  and 

as  X^P,  0-^C,hj  Theorem  3 '22,  as  was  to  be  proved. 
In  a  similar  manner  we  prove 

Theorem  3*26.  If  a  circle  centre  0  be  drawn  cutting  the  curve  at 
three  points  Qi,  Q^,  Qs,  and  if  p  is  continuous  at  P,  then  0—^C  as 

*  I.e.  a  value  of  t  such  that  t^<.t<:toU  t^  and  t^  are  the  parameters  of  the  points 

t  Note  the  following  enunciation  which  does  not  involve  the  hypothesis  of  con- 

tinuity : — 
If  a  circle  centre  0  be  drawn  cutting  the  curve  at  three  points  Q^ ,  P,  Q^  and  G,  the 

centre  of  curvature  at  P,  exists,  then  0—>G  as  Qi,  Q2—^P  from  opposite  sides. 
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Theorem  3'27.  The  osculating  circle^  when  it  exists,  is  the  same  as 
the  circle  of  curvature. 

This  is  a  particular  case  of  theorems  on  contact.    See  §  4 "40. 
Each  of  the  foregoing  theorems  embodies  a  possible  definition  of  C 

the  centre  of  curvature  at  a  point  P,  but  it  is  clear  that  some  are  more 
general  than  others.  Thus  any  of  the  definitions  embodied  in  Theorems 

3*22,  3"23  (A),  3'25,  are  as  general  as  our  definition,  and  accordingly  may 
replace  it.  The  others  are  not  so  general  and  so  are  not  suitable.  Con- 

versely, it  may  be  shown  that  if  any  of  these  alternative  definitions  be 
adopted,  then,  at  any  point  at  which  the  curve  has  a  curvature  1/p  by 
the  new  definition, 

Lt   J^=i. 
It  follows  that  these  definitions  are  completely  equivalent.   As  a  speci- 

men of  the  theorems  to  be  proved  we  take  the  following : 
If  the  n(yrmal  at  Q  cuts  the  normal  at  P  in  F,  and  if  V  tends  to  a 

finite  limit  C as  Q—>P,  then 

Lt    ¥=J-, 

with  the  proper  conventions  of  sign. 

This  is  the  converse  of  Theorem  3*22,  and  the  proof  is  simply  the 
proof  of  that  theorem  turned  backwards,  with  obvious  changes. 

There  are  a  variety  of  other  circles  which  tend  to  the  circle  of  curva- 
ture at  P  as  a  limit.    The  following  are  instances. 

A  circle  touching  the  curve  at  P,  and  the  tangent  at  a  neighbouring 

point  Q*. 
A  circle  touching  the  tangent  at  P*  and  the  tangents  at  neighbour- 

ing points  Qi,  Q^t 

A  circle  passing  through  P  and  touching  two  tangents  at  neighbour- 
ing points  ft,  §2|. 

A  circle  touching  the  tangent  at  P,  and  passing  through  two  neigh- 
bouring points  Qi,  Q2I. 

In  each  case  P  may  be  replaced  by  a  point  Q3  which  tends  to  P. 
Direct  proofs  of  all  these  theorems  are  not  difticult  (with  the  obvious 

*  I.e.,  the  circle  touches  Qt,  the  tangent  to  the  curve  at  Q,  but  touches  Qt  not 
necessarily  at  Q. 

t  There  are  four  circles  touching  these  three  tangents,  of  which  three  have  as 
limit  the  point  P. 

X  There  are  two  such  circles  in  each  case,  both  of  which  have  the  circle  of  curva- 
ture at  P  as  limit. 
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assumptions).    They  depend  on  a  combination  of  Theorems  3*25  and 
3*26  with  well-known  properties  of  triangles. 

§  3 '30.  The  closeness  of  approximations  to  the  circle  of 
curvature.  It  is  often  useful  to  know  the  order  of  the  error  involved 

in  replacing  the  circle  of  curvature  by  one  of  the  circles  which  has  the 
circle  of  curvature  for  a  limit,  for  instance  the  circle  through  P  and 
two  neighbouring  points  Q,,  Q^. 

Taking  the  tangent  and  normal  at  P  for  axes,  the  curve  is 

y=/(^),    (/(0)=/(0)  =  0,    /'(0)  +  0); 

C  is  the  point  (0,  l//"(0)),  and  r  the  intersection  of  the  perpendicular 
bisectors  of  Pft,  P§o.    Then  r  lies  on  the  two  lines 

where  Qi  is  (^i,  ̂i)  and  Q.2  is  (4,  -q^.    If/*'' (0)  exists,  we  have 

and  therefore  the  equations  (3*31)  reduce  to 

^+{i^2/"(o)+i4y"'(o)  +  o(^/)}7/-i4(i  +  o(40)  =  o. 
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Solving,  we  have 

x  y 

where  ̂   denotes  the  numerically  greater  of  ̂ i  and  ̂ s- 
It  follows  that  in  general  the  ordinates  of  C  and  V  differ  hy  a 

length  of  order  I,  but  that  if  ̂2  =  -  li  then 

(3-32)  ^=o{i%y=j^fO{t% 
We  have  therefore  proved  that  if  the  arcs  PQi,  PQi  are  equal  and 

opposite  (say  ±  85),  or  moi^e  generally  if  PQ^  =  85,  PQ2  =  —  8s+0  (SsY, 
then 

(3-33)  VC=0{hs)\ 

Since  both  circles  pass  through  P,  their  radii  also  differ  by  0  (8sy,  and 
in  fact  the  circle  Q2PQ1  represents  the  circle  of  curvature  at  P  with  an 
error  Oi^sf. 

This  fact  is  important  if  we  wish  to  apply  geometrical  reasoning  to 
approximate  figures.  If,  for  instance,  we  are  going  to  argue  about  C 

and  Cj  (the  centre  of  curvature  at  Qi),  representing  them  in  the  fore- 
going manner  by  T  and  r, ,  rrj  or  CG^  will  itself  be  a  small  quantity 

of  the  first  order  and,  unless  VC  and  V^Cx  are  of  higher  order  than  the 
first,  no  such  argument  can  possibly  be  legitimate.  It  is  essential  to 

take  the  precaution  indicated  by  the  preceding  discussion*.  When  this 
has  been  done  we  have  for  instance 

rri/(70i  =  i  +  0(8s), 

whereas  in  the  other  case  it  is  by  no  means  evident  even  that 

Lt  VVxlCCx  =  1. 

In  a  similar  way  it  may  be  shown  that,  if  K  is  the  intersection  of 
normals  at  Qi  and  Q2, 

(3-34)  KC=0(Ssf 

if  and  only  if  Pft  and  PQ^  are,  with  a  possible  error  0  (psf,  equal  and 
opposite  arcs. 

*  Similar  arguments  must  be  applied  in  the  theory  of  twisted  curves  when 
approximate  geometrical  figures  are  used.  The  use  of  such  figures  can  only  be 
legitimate  when  the  errors  in  the  approximate  representations  are  of  the  second  or 
higher  order.    This  point  appears  to  be  often  overlooked. 

F.  3 
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§  3*40.    Newton's  Method.   A  formula  that  is  often  useful  is  con- 
tained in  the  following  theorem. 

Theorem  3 '41.    If  the  tangent  and  noi^mal  at  P  are  taken  as  axes 
of  a;  and  y,  and  p  exists,  then 

(3-42)  p=   Lt  1^. 

Let  Q  be  the  point  (x,  y).  Draw  a  circle  to  touch  the  curve  at  P 

and  pass  through  Q;  then,  by  Theorem  3*25,  this  circle  tends  to  the 
circle  of  curvature  as  Q—^P,  i.e.  as  ̂   — >  0.  If  ̂   is  the  radius  of  this 
circle,  BIi=  2B  -y.    We  have  also 

NP"  =  NQ .  NR,^ '' so  that  ar^/y  =2E-y—>2p, 

which  proves  the  theorem. 

§  3-50.  The  Differentials  dl,  dm,  etc.  Theorem  3 "22  has  an  im- 
portant consequence.  The  equation  of  the  normal  at  (i,  rj)  may  be 

written 

(3  -501 )  (x-$)l  +  (i/-'n)m  =  0, 

where  (/,  m)  are  as  usual  the  direction  cosines  of  the  tangent  at  (i,  rj). 
C  {X,  Y)  lies  on  this  line,  so  that 

(3-502)  {X-^)l  +  {Y-ri)m  =  0. 
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But  C  is  the  limit  of  intersections  of  neighbouring  normals,  and  there- 

fore* (X,  F)  also  satisfy  the  equation 

(3-503)         (X-  ̂ )dl  +  {Y'-ri)dm  =  Id^  +  rndt]  =  ds. 

But  we  have  also  l^  +  m^=l,  and  therefore 
Ml  +  mdm  =  0. 

Hence  dl  and  dm  satisfy 

\(Y-'n)dl-(X-$)dm  =  0, 
(3-O04)  ^^^^  $)dl+(  Y-  r,)  dm which  may  also  be  written 

'7ndl  —  I  dm  =  0,  * 
[ldl  +  mdm  =  dsjp, 

where  (/',  w^')  are  the  direction  cosines  of  the  positive  normal. We  have  therefore 

,._,  ̂   X  dl  _  I'     dm  _  m' 
^^'''^^  ds-y    ~ds-~p^ 

<->  HtKtl 
Remembering  that  I  =  dcc/ds,  m  =  dif/ds,  we  have 

^'-''^  ?={-ds^)^{J)' 
With  our  conventions  t,  /'  and  m'  are  connected  with  /  and  m  by  the 
relations  i'^^^  m'^-l 

*  The  full  reasoning  here  is  as  follows.    (X,  Y)  is  the  linait  of  the  intersection  of 

and  {x-^-  50  (Z  +  5Z)  +  (i/  - t; - 8?;)  (m  +  5w)  =  0, 

i.e.  of  (^x-^)l+{y-ri)vi  =  (i 

and  {x-^)bl+{y-'n)dm=[{l  +  U)  5^  +  (m  +  5m)  S?/}. 

Now  when  /"  (oc)  exists  d^  exists,  and  therefore  dl  and  dm  exist.    Therefore  (Z,  F) 
^^*^^^y  (x  -  0  dZ  +  (1/  -  7/)  dm  =  ds, 
which  is  the  limiting  form  of  the  second  equation, 

t  In  general  {V,  vi')  satisfy 
l'--^m"^=\,    ll'  +  mm'  =  0 

{condition  of  perpendicularity) ,  and  therefore 

r  =  \m,    rn'  =  -\l, 

where  \=  ±1.    X=l  when  the  conventions  are  chosen  so  that,  the  positive  tangent 
coinciding  with  Ox,  the  positive  normal  coincides  with  Oy;  X=  -1  when,  in  like 

case,  the  positive  normal  coincides  with  Oy'. 
3—2 
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Therefore 

(3-54) dl'  _     I     dm  _    m 

ds        p'     ds         p  ' 
It  may  be  noted  that  we  have  nowhere  assumed  the  continuity  of/"  (a-) 
or  its  equivalent.    Formulae  3*51,  3*54  are  the  two-dimensional  ana- 

logues of  Frenet's  Formulae. 
A  more  general  formula  for  p,  available  for  any  parametric  repre- 

sentation of  the  curve,  may  be  obtained  as  follows  from  3*52: 

^^={diy+(dmf 

'dx 

[dsY which  reduces  to 

(3-55)  1  _(d^^y^(d'yr-(d^sy p^  (dsy 

§  3-60.  An  alternative  treatment  using  moving  axes.  The  theorems 
of  §  3*50  can,  alternatively,  be  obtained  by  the  use  of  moving  axes.  This 
method  has  the  advantage  that  it  can  be  immediately  generalized  to  provide 

a  simple  treatment  of  the  corresponding  problems  for  twisted  curves. 

The  simi^lification  obtained  by  this  treatment  is  essentially  due  to  the  fact 

that  the  curve  is  at  each  point  P  referred  to  its  tangent  Ft  and  normal  Fn  as 

axes.  Allowance  must,  of  course,  be  made  for  the  fact  that,  as  the  point  F 

moves  along  the  curve,  the  pair  of  axes  Ft,  Fn  also  move ;  in  particular  they 

rotate  in  their  own  plane ;  when  F  moves  a  distance  bs  along  the  curve  the 

angle  turned  through  is  6^.  If  dyj^/ds  exists  at  F  (and  is  equal  to  1,'p)  the  axes 
are  said  to  have  the  "spin"  1/p  at  F.  For  the  sake  of  the  kinematic  analogy 
we  suppose  that  F  is  moving  along  the  curve  with  uniform  unit  velocity,  so 
that  s  may  be  regarded  as  representing  the  time. 

To  obtain  the  results  of  §  3*50  we  only  require  a  knowledge  of  the  true  rates 
of  increase  of  the  components  of  a  vector  which  is  defined  with  respect  to  a 

system  of  moving  axes.    These  may  be  stated  in  general  terms  as  follows. 

Let  {x,  y)  be  the  vector  components  (functions  of  the  time  t)  referred  to 

axes  moving  with  a  spin  «,  which  is  positive  when  it  rotates  the  axis  of  or 

towards  the  axis  of  y.  Let  {x\  y')  be  the  differential  coefficients  of  (.i7,  y)  with 
respect  to  t,  and  {DxjDt,  DyjDt)  the  true  rates  of  change  of  the  vector  com- 

ponents in  fixed  directions  coinciding  with  the  instantaneous  directions  of  the 

moving  axes.    Then* 

(3-601)  Bx\Bt=x'  -yat,   DylDt=^y' +  x<o. 
Returning  to  our  curve  we  see  that  any  set  of  direction  cosines  defines  a 

*  The  proof  of  this  classical  result  is  left  to  the  reader. 
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unit  vector  whose  components  may  be  regarded  as  functions  of  the  "time"  s. 
The  direction  cosines  of  the  axes  Ox,  Oy  referred  to  the  moving  axes  Pt,  Pn 

are  respectively 

These  directions  are  fixed  in  space,  and  therefore  {I,  l'),  (m,  m')  are  the  com- 
ponents of  constant  vectors.   Therefore 

Ws~Ws~  Ds"  Ds  ~  ' 

Applying  3-601,  and  replacing  <»  by  1/p,  we  find  that 

dl  _l'     dV _     I      dm _m'     dm' _     m 

^         ̂   ds~  p^    ds~     p '     ds  ~  p"*  "  ds  ~     p' 

But  these  are  equations  3-51  and  3'54,  which  contain  all  the  results  of  §  3-50. 

§  3-610.  The  kinematics  of  a  rigid  body  with  reference  to  the  proper- 
ties of  twisted  curves.  Before  leaving  the  subject  of  curvature,  we  propose 

to  sketch  shortly  the  manner  in  which  the  properties  of  a  twisted  curve  may  be 

obtained  with  the  help  of  general  geometrical  theorems,  usually  applied  to  the 

problems  of  the  kinematics  of  a  rigid  body.  There  is  a  special  set  of  three 

lines  at  right  angles  through  each  point  of  a  twisted  curve  (of  which  one  is  the 

tangent  to  the  curve),  referred  to  which  the  curve  has  a  specially  simple  form 

near  the  point  in  question.  These  three  straight  lines  or  triad  may  be  regarded 

as  moving  like  a  rigid  body,  as  their  point  of  intersection  moves  along  the 

curve,  and  the  nature  of  the  curve  is  therefore  closely  connected  with  the 
motion  of  the  triad. 

The  discussion  forms  a  natural  extension  of  the  preceding  part  of  the 

chapter,  especially  §  3-60.  Proofs  are,  in  the  main,  only  outlined,  and  the  reader 
may,  with  advantage,  construct  detailed  proofs  of  any  of  the  theorems 
enunciated. 

It  should  be  borne  in  mind  in  what  follows  that  the  kinematical  language 

may  be  regarded  simply  as  illustrative.  All  terms  employed  are  capable  of  a 

purely  geometrical  or  analytical  interpretation. 

In  the  first  place,  any  displacement  of  a  rigid  body,  with  one  point  fixed, 

may  be  uniquely  represented  by  a  certain  rotation  about  a  certain  axis  through 

the  fixed  point,  called  the  axis  of  rotation*. 

Let  us  now  regard  the  displacement  of  the  body  as  defined  by  certain  func- 
tions of  an  independent  variable  (the  time  t,  say)  which  specify  the  direction 

cosines  of  certain  lines  fixed  in  the  body  referred  to  axes  fixed  in  space.  If, 

then,  the  differential  coefficients  of  these  functions  exist  at  t  =  to,  the  axis  of 

rotation  tends  to  a  limit  called  the  Instantaneous  Axis  as  t—^toy  and  the 

rotation  about  the  axis  is  asymptotically  equal  to  Q  {t—to),  where  O  is  a  definite 

constant,  which  may  be  called  the  "spin"  of  the  body  about  the  instantaneous 
axis. 

*  Euler's  Theorem.  See  Routh,  Rigid  Dynamics,  Vol.  i,  Chap,  v,  §  1;  Thomson 
and  Tait,  Natural  Philosophy y  Vol.  i,  Part  i,  p.  69. 
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It  follows  that  the  motion  of  the  body  from  tQ  to  t  can  be  represented  by  a 

rotation  Q{t-  to)  about  the  instantaneous  axis,  with  an  error  o{\t  —  t()\}*. 

The  "spin"  obeys  the  vector  laws  of  composition  and  resolution.  It  can  be 
represented  as  a  vector  whose  direction  is  the  direction  of  the  instantaneous 

axis  and  whose  magnitude  is  Q  t.    This  may  be  established  as  follows. 

If  the  body  has  the  spin  G  about  an  axis  whose  direction  cosines  are 

{I,  m,  n\  a  point  P  in  the  body,  of  coordinates  {x,  y,  2),  has  a  velocity  whose 

components  are 
m    n    Q.  n     I     Q..  I     m    Q.. 

(A) 

y     z  z    X  -^    y 

along  the  axes  of  Ox^  Oy^  Oz.  If  we  agree  to  call  {l€l,  mQ.,  nQ)  the  resolved 

parts  of  the  spin  Q.  along  these  axes  and  write  01  =  ?Q,  etc.,  then  the  com- 
ponents of  the  velocity  of  P  are 

-0)3^  +  0)22,     -0)1^  +  0)3^,     -0)2^+0)1^, 

which  are  exactly  the  same  components  as  are  got  by  considering  the  body  as 

having  simultaneoiialy  spins  coi,  0)25  ̂ 3  about  the  three  axes  Ox^  Oy^  Oz,  respec- 
tively. 

Therefore  spin  can  be  resolved  like  a  vector,  if  the  direction  of  this  vector  is 

the  axis  of  the  spin,  and  its  length  proportional  to  the  spin. 

In  general  a  body  may  be  said  to  have  simultaneously  two  spins  about  any 

two  diflferent  axes,  if  every  point  P  of  the  body  has  a  velocity  which  can  be 

represented  by  the  sum  of  two  expressions  of  type  (A).  The  O:r-component  is 

*b^n  ^a>^j^^a}^z^a>3y  +  G>2Zj 

or  -(G>3  +  0)3')^+(«2  +  «2')y- 
Thus  the  body  is  really  spinning  about  an  axis  and  with  a  spin  which  is  the 

resultant  by  the  parallelogram  law  of  the  components 

(wi-fo)/),  {(02  +  0)2),  (ws  +  ̂s')) 
which  is  identical  with  the  resultant  by  the  same  law  of  (a)  (toi,  koo,  w.j)  and 

(6)  (o)/,  (02  ,  (03),  i.e.  of  Q  and  li'. 
Therefore  spms  may  be  compounded  like  vectors. 

The  relation  between  the  direction  of  rotation  of  the  spin  Q,  and  the  posi- 
tive direction  of  the  axis  denoted  by  {I,  m,  n)  is  chosen  to  be  such  that  wi,  the 

spin  about  Ox,  is  positive  when  it  tends  to  rotate  the  axis  Oy  towards  the  axis 

Oz.  The  same  statement  is  true  of  the  other  components  when  the  letters 

{x,  y,  z)  are  cyclically  interchanged. 

Again  suppose  that  a  body,  moving  about  a  fixed  point  0,  has  an  instan- 
taneous axis  at  t  =  to.  If  two  lines  fixed  in  the  body  have  positions  OTi,  OT^^ 

at  time  t  and  OTi  ,  0T{  at  time  t^,  and  if 

T^6T{=T^6T2  +  o{\t-to\\ 
the  instantaneous  axis  must  lie  in  the  plane  TxOT2%. 

*  Routh,  loc.  cit.  Art.  217.     The  necessary  extension  of  this  article  is  obvious. 
t  Routh,  loc.  cit.  Arts.  230-232. 
J  The  reader  should  draw  a  spherical  figure,  and  apply  the  preceding  properties 

of  the  instantaneous  axis. 
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This  completes  the  properties  of  the  spin  and  instantaneous  axis  that  are 

required.  We  want  one  more  property,  the  analogue  for  three  dimensions  of 

3-601,  concerning  the  true  rates  of  increase  of  a  vector  defined  with  respect  to 
a  system  of  moving  axes. 

Let  (x',  y,  z)  be  the  vector  components  (functions  of  t)  referred  to  moving 
axes  whose  motion  may  be  resolved  into  spins  {di,  6 2^  63)  about  the  instan- 

taneous directions  of  these  axes.  Let  {j:\  y\  z')  be  the  diflferential  coefficients 
of  (.r,  y,  z)  with  respect  to  ̂ ,  and 

DxIDt,  DylDt,  Bz/Dt 

the  true  rates  of  change  of  the  vector  components  in  fixed  directions  coinciding 

with  the  instantaneous  directions  of  moving  axes.    Then* 

DxlDt=x'-y03  +  z02, 

DylDt=^y'-zei-\-xe3, 
DzlDt=z-x02+yOi. 

This  completes  the  account  of  the  kinematics  of  a  rigid  body,  so  far  as 

required  for  the  discussion  of  a  twisted  curve. 

§  3-620.  The  curvature  and  torsion  of  a  twisted  curve.  Frenet's 
formulae.  The  set  of  fundamental  axes  associated  with  a  point  P  of  a  twisted 
curve  are : — 

Axis  (1).  The  tangent  to  the  curve  at  P,  drawn  in  the  direction  of  s  in- 
creasing.   This  direction  may  be  arbitrarily  chosen  for  s. 

Axis  (2).  The  principal  normal  at  P,  which  is  the  line  through  P,  in  the 

osculating  plane,  normal  to  the  tangent  at  P.  The  positive  direction  of  the 

principal  normal  may  be  chosen  arbitrarily. 

Axis  (3).  The  binormal  at  P,  which  is  the  normal  through  P  to  the  oscu- 

lating plane,  drawn  in  a  direction  such  that  the  two  triads.  Pi  23  and  Oxyz,  are 

of  the  same  type,  i.e.  can  be  placed  so  that  the  positive  directions  (Pi,  P2,  P3), 

{Ox,  Oy,  Oz)  respectively  coincide. 

Referred  to  axes  Oxyz  let  (?i,  w^,  n-^)  be  the  direction  cosines  of  the  tangent 

Pi,  (?25  ̂^2,  ̂ ^2)  the  direction  cosines  of  the  Principal  Normal  P2,  (Z3,  W3,  %) 
the  direction  cosines  of  the  Binormal  P3. 

The  twisted  curve  is  assumed  to  be  given  in  the  form 

•^  =  01  («X    3/  =  02(«),     2;  =  03  (5), 

and  <^i',  02'?  ̂ 3'  ̂^^  ̂ ^^  simultaneously  zero. 

If  (^1'",  02' "5  03  "  exist,  and  s,  for  the  sake  of  the  kinematic  analogy,  is  re- 
garded as  the  "time",  the  triad  P123,  regarded  as  a  rigid  body,  has  an  in- 

stantaneous axis,  which  lies  in  the  plane  Pi 3,  i.e.  normal  to  P2t. 

*  Routh,  {Advanced)  Rigid  Dynamics,  Vol.  11,  pp.  1-4. 
t  The  directions  of  P123  maybe  defined  in  terms  of  (0/,  tp.^',  (f,./)  and  {<f>i",  02",  03")- 

Hence  the  instantaneous  axis  exists.  By  the  theorem  of  Ex.  I9j8,  if  Ql'  is  the 

du-ection  of  the  tangent  at  Q,  and  PQ  =  ds,  the  angle  between  PS  and  QV  is  Jtt  -f-  0  (5s)2, 
and  the  statement  above  follows  from  the  last  property  of  the  Instantaneous  Axis 

established  in  §  3-610. 
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The  angular  motion  of  the  triad  PI  23  may  therefore  be  represented  by- 
spins  -  1/r,  0,  l/p  about  the  axes  Pi,  P2,  P3.  It  therefore  follows  that,  if  F, 

Q  are  two  points  bs  apart,  §>//•  the  angle  between  the  tangents  at  P  and  Q,  and 
be  the  angle  between  the  osculating  planes  or  binomials  at  P  and  Q,  and  if 

also  (^i'",  02")  03'")  exist,  then 

Lt     f  =  l,       Lt    «^=-l. 
We  define  l/p  and  l/V  to  be  the  curvature  and  torsion  of  the  curve  at  P. 

The  direction  cosines  of  the  axes  of  reference  Ox,  Oy,  Oz  referred  to  the 

moving  system  Pi  23  are  respectively 

These  directions  are  fixed  in  space  and  therefore,  for  example,  (Zi,  U^  l^)  are  the 

components  of  a  constant  vector.    Therefore 

Ds~  Ds~"'~  Ds 
It  follows  at  once  that 

Ds 

=  0. 

(3-621) 

(3-622) 

(3-623) 

^'ds"  p' 

ds       T      p 

dl,     h 

with  similar  expressions  for  the  wi's  and  ?i's.    These  are  Frenet's  Formulae. 
In  conclusion  we  shall  establish  a  few  of  the  more  important  formulae  for 

p  and  T  which  follow  from  Frenet's  formulae. 
Since  2li^  =  l,  2Zi^2  =  0,  where  2  refers  to  summation  over  the  letters  {I,  on,  n\ 

with  similar  formulae  for  other  suffixes,  we  have  at  once 

(3-624) 

(3-625) 

(3-626) 

u.m. .  (-y 2 

1  _     dli  dl^ 

pr         ds  ds 

Again,  since  (^3,  m^,  ns)  are  the  direction  cosines  of  the  normal  to  the  oscu- 
lating plane,  it  follows  from  Ex.  19,  that 

I3  ^h  ^3  2/3^  1 
mi 

«i 
ni 

li 

h 

mi 

h 

17ls 

ns 

1 
h 

m.i 

^h 

m/ 

w/ 

^1 

ii 

i; 

mi 

^, 

mi 

ni 

P 
h 

'>H 

'/h 

u 

mi 

ni 

h 

ms 

% 

=p» 
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for  the  triad  P123  or  (^i,  Wi,  Wj),  {h,  m^,  n^),  {h,  m^,  n^)  is  of  the  same  type 

as  Oa^i/z.    Dashes  denote  difFereiitiation  with  respect  to  s.    Therefore 

l=sw= 
=  2Wp' -^p2lx' 

7)11 

mx"     ' 

nx 

=  p mx 

mx 

nx'
 

nx 

W    mx" 

Ux 

Hence 

{3-627) 
1 - Ix      mx       iix 

x'
 

y'    z' 

. 

l{     m{     n{ 

x"
 

y"    ̂ ' 
l('     mx"     nx" 

x'"
 

y"
 

r 

§  3-70.  Evolutes  and  involutes*.  From  here  onwards  we  shall 
need  to  assume  more  than  the  existence  of  p,  and  shall  therefore  assume 
the  existence  and  continuity  of  all  differentials  or  derivates  that  are 

mentioned.  It  is  easy  to  see  that,  for  the  curve  y-f{x),  the  continuity 

of  dpjds  is  equivalent  to  the  continuity  of /"'('2^)j  and  so  on.  Such 
details  are  here  of  no  great  interest  or  importance. 

Definitions.  The  evolute  of  a  given  curve  is  the  locus  of  its  centre 
of  curvature.  Any  curve  which  has  a  given  curve  for  evolute  is  called  an 
involute  of  the  given  curve. 

Thus  a  given  curve  is  an  involute  of  its  evolute,  but  we  shall  see  it 
is  only  one  of  many. 

We  shall  make  a  rule  of  using  capital  letters  for  points,  etc.  belong- 

ing to  the  evolute,  X,  F,  P,  S,  ̂,  L,  M,  L',  M'  (if  required)  having  the 
same  meanings  for  the  evolute  that  w,  y,  p,  s,  ij/,  I,  m,  l\  m  have  for  the 
original  curve,  and  all  letters  referring  to  corresponding  points.  Now 

we  have  X=  x  +  I'p,   Y=y  +  m'p. 
Therefore 

{dX=  dx  +  I' dp  +  pdl'  =  I' dp, 

\dY=dy-\-  rndp  +  pdrn  =  m'dp, so  that 

(3-71)  {dSy  =  {dpf. 
So  long  as  dp  does  not  change  sign,  we  can  choose  a  suitable  direction 
in  which  to  measure  S  on  the  evolute,  and  have 

(3'711)  dS=dpj. 

*  Picard,  Traite  cC Analyse,  2nd  Ed.,  Vol.  i,  pp.  350  sqq.    We  shall  in  future  refer 
to  this  book  as  Picard. 

t  This  is  of  course  an  exact  relation. 
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Now  we  have  as  usual 

(3712)  dX^LdS,  dY=MdS, 

and  as  a  consequence  of  3*701  and  3'712  we  see  that  X  =  /',  M^m. 
We  have  thus  established  the  following  properties. 

Theorem  3*72.  The  ewlute  touches  each  normal  at  the  centre  of 
curvature. 

Theorem  3*73.  The  arc  of  the  evolute,  corresponding  to  an  arc  of  the 
original  curve  foi^  which  p  constantly  increases  or  decreases,  is  equal  to 
the  difference  of  the  radii  of  curvature  touching  its  extremities. 

The  last  theorem  follows  at  once  by  integrating  3*711 ;  for  we  thus 
get  S=p  +  c,  where  c  is  a  constant. 

It  follows  at  once  from  3*711  that  every  plane  curve  whose  curva- 
ture is  constant  is  a  circle,  for,  since  (dSf  =  0,  the  centre  of  curvature  at 

one  point  is  the  centre  of  curvature  at  every  point  of  the  curve.  There- 
fore every  point  of  the  curve  lies  on  a  fixed  circle. 
A  formula  for  P  is  easily  found.    For  we  have 

P  =  (dSld<i^)  =  {dpjd^), 

and  it  is  evident  that  \d'if\  =  \d\f/\.    Hence,  without  regard  to  sign, 

(^•^*)  -Sl-t  • 
The  converse  of  Theorem  3*72  is  also  true. 

Theorem  3*75.  A  curve  ivhich  at  every  point  touches  a  normal  to  a 
given  curve  V  is  the  evolute  of  T  {m-  part  of  it). 

This  is,  properly  speaking,  a  particular  case  of  Theorem  5*32  on 
envelopes,  but  a  direct  proof  is  easy.  For  if  a  normal  to  V  touches  the 

curve  at  (7,  then  C  is  the  limit  of  the  point  of  intersection  of  neighbour- 
ing normals,  and  therefore  a  centre  of  curvature  of  V.  Hence  all  points 

on  the  curve  are  centres  of  curvature  of  P,  which  proves  the  theorem. 

§  3 '80.  Theorem  3*81.  To  a  given  curve  there  belong  infinitely  many 
involutes. 

Let  P  (x,  y)  be  a  point  on  a  given  curve,  and  Q  (i,  rf)  a  point  on  the 

tangent  at  P  such  that  PQ  --{s-\-  a),  where  a  is  any  constant.    Then 

$  =  .T--(s  +  a)  I,     di  =  -  (s  +  a)  dl, 

7)  =  y  -(s  +  a)m,   dr)  =  -  (s  +  a)  dm, 

and  therefore  d^  :  dr)  =  1'  -.  m\ 
so  that  the  tangent  at  Q  to  the  locus  of  Q  is  parallel  to  the  normal  at 
P;  i.e.  QP  is  the  normal  to  the  locus  of  Q  at  Q.   Hence  the  given  curve 
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t 

Q(^^) 

Fig.  11. 

touches  all  the  normals  to  the  locus  of  Q,  and  each  of  its  points  is  a 
point  of  contact  with  some  normal.  Therefore,  by  Theorem  375,  the 

given  curve  is  the  evolute  of  the  locus  of  Q,  which  is  therefore  an  in- 
volute.   It  is  clear  that  we  get  a  new  involute  for  each  value  of  a. 

The  following  mechanical  description  of  the  involute  is  of  interest. 
Suppose  that  a  thread,  inextensible,  perfectly  flexible,  and  without 
thickness,  is  wound  tightly  round  an  arc  of  the  curve,  leaves  the  curve 
along  the  tangent  at  0,  and  ends  on  any  chosen  involute  at  Q^.  If  the 
thread  be  then  unwound  off  the  curve,  being  always  kept  tight,  the  end 
will  describe  the  chosen  involute.  For  w^hen  the  thread  leaves  the  curve 
at  P,  and  the  end  is  at  Q  along  the  tangent  at  P,  we  have 

§P-aO  =  arc  OP, 
and  therefore  Q  is  still  on  the  involute  through  Q^.    Hence  the  end 
describes  the  chosen  involute. 

EXAMPLES  II 

(1)   Prove  that,  with  due  regard  to  sign, 
p  =  rdr/dp 

in  all  cases,  p  and  r  being  the  tangential-polar  coordinates  of  the  curve. 
[Lamb,  Infinitesimal  Calculus,  2nd  Ed.,  pp.  401-402.] 



44  THE  CURVATURE  OF  PLANE  CURVES 

(2)  By  drawing  the  normals  at  points  PQR  such  that  arc  PQ  =  arc  QR  =  Bs^ 
prove  that  the  evohite  touches  the  normals  and  that 

dS=dp. 

[Let  ̂ ^1X2  be  the  mid-points  of  the  arcs  PQ,  QR,  and  C1C2  their  centres  of 
curvature;  then  Ci  is  represented  with  an  error  0(BsY  by  Ti,  the  intersection 

of  normals  at  P  and  Q,  and  C2  similarly  by  r2,  the  intersection  of  normals  at 

Q  and  R.  Hence  rir2  '^  CiC^,  and  rir2  tends  to  parallelism  with  the  tangent 
to  the  evolute  at  Cj.    Hence  the  theorem.] 

(3)  Taking  the  tangent  and  normal  to  a  curve  as  the  axes  of  ̂   and  y,  and 

measuring  s  from  the  origin  in  the  direction  of  a.-  increasing,  prove  that 

In  particular  if 

(d''yfrld8'')Q^0,  and  d^'-^^flds''-^^  continuous,  then 

^"'     2r(4r2-l){(r-l)!}2U^"7o        ̂          ̂' 

[We  have  x=  \    con  yj/ds,  y=  \    sin\//-c?*\     Expand  these  expressions  by y  0  Jo 

Taylor's  theorem,  remembering  that  ̂ ^  =  ̂ i\ 

(4)  If  PT,  QT  are  the  tangents  at  P  and  Q,  meeting  in  T,  and  the  condi- 

tions of  the  latter  part  of  (3)  hold  at  P,  then  PTjQT-^rai,s  Q-^P. 
[Use  the  result  of  Example  (3)  above.] 

(5)  If  PT,  QT&YQ  the  tangents  at  P  and  Q,  meeting  in  T,  the  circle  PQT 

has,  as  its  limit  as  Q—>P,  a  circle  of  radius  ̂ p  whose  centre  lies  on  the 
normal  at  P. 

[If  the  normals  at  P  and  Q  meet  at  K,  PQTK  are  concyclic] 

(6)  If  Ti,  To,  T^  are  the  three  points  of  intersection  of  the  tangents  at 

P,  Qi,  Q2,  the  circle  T^T^T^  has,  as  its  limit  as  ̂ 1,  Q.2—^P,3,  circle  of  radius 
|p  whose  centre  lies  on  the  normal  at  P. 

[Use  Theorem  2-624.] 
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CHAPTER  IV 

THE  THEORY  OF  CONTACT* 

§  4'10.  The  distance  from  a  curve  of  a  point  near  it.  If  two 
curves  have  a  common  point  P,  it  is  a  matter  of  some  interest  in  itself, 

and  of  vital  importance  for  further  developments,  to  investigate  how 

close  the  two  curves  lie  to  one  another  in  the  neighbourhood  of  P. 

Fig.  12. Fig.  13. 

More  precisely,  it  is  required  to  determine  the  order  of  §1^2  (Fig.  12) 
when  Qi-^P  and  Q^—^P,  i.e.  when  ft P  and  ftP  are  small  lengths 
of  the  first  order  of  smallness.  With  this  object  in  view  we  proceed  as 
follows. 

We  take  the  curve  in  the  form 

and  suppose  that  P  (a,  b)  is  an  ordinary/  point  of  the  curve,  i.e.  that 
fa  and  fb  are  not  both  zero.  Let  Q  be  any  point  (^,  y)  near  P,  not  on 

the  curve,  and  Q'  any  point  (a:'y  /)  near  P  on  the  curve,  so  that 

/(a,6)=/(^',y)  =  0. 

*  d.l.V.P.,  Vol.  II,  p.  396  (on  whose  exposition  our  treatment  is  based);  Picard, 
Vol.  I,  p.  342;  Goursat,  Vol.  i,  p.  530;  Jordan,  Vol.  i,  p.  417  (a  treatment  which  in- 

cludes complex  points  and  curves). 
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Let  the  length  and  direction  cosines  of  QQ  be  o-  and  {I,  m).  We 
proceed  to  determine  an  asymptotic  formula  for  cr  valid  as  Q—^P. 
We  assume  that/(^,  y)  has  as  many  continuous  differential  coefficients 

as  may  be  mentioned.  At  present  our  requirements  are  second  order 

differential  coefficients  in  the  neighbourhood  of  P.    We  have 

x  =x-\-l(j^    y  =^y  +  nia-, 

0  =f{x  -^la^  y  +  ma-), 

where  i  is  some  number  between  x  and  x'  and  rj  some  number  between 

y  and  y'.  Now  when  Q—^Piu  any  manner,  /  and  m  remaining  constant 
and  equal  to  4  ̂ind  iUa,  or  satisfying  the  relations  /— >  4,  m—^  Wo,  we 

^^^^  /(^,  2/) ->/(«,  ̂ )  =  0, 

(4-101)  ///  +  mf^'  -*  lo/a  +  mj^. 

If  therefore  /o/a  +  ̂ o/?>'  +  0, 

i.e.  if  Q§'  is  parallel  to,  or  tends  to  parallelism  with,  a  fixed  line  L 
not  parallel  to  the  tangent  at  P\,  then 

(4102)  or-^0, 

as  Q  -^P. 
Again  we  have 

0  =/(^,  y)^<r  {If J  +  mfy')  +  0  ((r2){, 
=/(^,  y)+<^  {{kfa  +  ̂ o/O  +  0  (1)}, 

by  4' 101  and  4*102,  and,  since 

kfa  +  riiofb  4=  0, __  fC^  11 ) 

we  have  o- '^  y  /»/         r/ > 

as  Q—^P.    We  can  therefore  enunciate  the  following  theorem. 

Theorem  4*11.  If  P  is  an  ordinary  point  on  the  curve  fix,  y)  =  0, 
and  a-  is  the  distance  from  a  neighbouring  point  Q  (x,  y)  to  the  curve^ 
meamred parallel^  to  a  straight  line  not  parallel  to  the  tangent  at  P,  then a-  <^  Af{x,  y), 

we  ̂ 4=  Oil,  as  Q-^P. 

*  By  Taylor's  Theorem,  for  n  =  l. 
t  This  condition  is  sufficient  (but  not  necessary)  to  ensure  that  cr  — >  0. 

X  By  Taylor's  Theorem,  for  n  =  2. 

§  Or,  Hn  a  direction  that  tends  to  parallelism  with'. 
li   Or,  in  the  notation  of  Orders  of  Infinity,  p.  2, 
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The  following  alternative  form  may  sometimes  be  more  convenient. 

Theorem  4*  12.    If  <j  is  the  shortest  distance  from  Q  to  the  curve,  the 
other  conditions  of  Theorem  4*1 1  remaining  unaltered,  then 

<r^-f(^,y)Kfa'-^A'')K 
as  «->P. 

If  QQ'  is  the  shortest  distance  from  Q  to  the  curve,  it  is  easily 
proved  that  QQ'  is  normal  to  the  curve  at  Q'.  As  Q—^P,  o-— ►O,  and 
therefore  Q' —>P,  so  that  the  direction  parallel  to  which  QQ'  is 
measured  tends  to  parallelism  with  the  normal  at  F.    Hence 

and  the  theorem  follows  at  once. 

§  420.  Definition  of  contact  of  order  n.  We  now  make  the 
following  definition. 

Definition*.  Two  curves  that  have  an  ordinary  point  P  in  common 
are  said  to  have  contact  of  order  n  at  P,  if  the  distance  fofa  point  Q 

of  one  curve  from  the  other  is  of  the  (n  +  l)th  m'der  of  smallness  com- 
pared to  QP. 

They  may  he  said  to  have  contact  at  least  of  order  n  if  the 
distance  is  at  least  of  the  (n  +  l)th  order  of  smallness  compared  to  QP, 

Another  way  of  stating  the  same  thing  is,  of  course,  to  say  that  if 

o-  is  the  distance  in  question,  then 

<r^{Qpr-\ 
or  in  the  second  case  o-  <  (§P)"+\ 

Suppose  that  the  curve  on  which  Q  is  not  taken  has  the  equation 

f(x^  y^  =  0.  Then  the  results  of  the  last  section  may  be  expressed  as 
follows. 

Theorem  4 '21.  The  necessary  and  sufficient  condition  that  the  two 
curves  should  have  contact  of  ot^der  n  at  the  point  P  is  that,  when  the 
coordinates  of  Q  are  substituted  for  a;  and  y  in  f{x,  y),  the  expression 
f{x,  y)  should  satisfy  the  relation 

(4-211)  f<i^.y)^{PQr^\ 
as  Q—>P  along  its  curve. 

*  It  should  be  observed  that  the  definition  as  it  stands  needs  justification,  for  it 
defines  a  property  symmetrical  with  respect  to  the  two  curves  in  terms  of  an  un- 

symmetrical  property.  But  it  will  appear  that  the  conditions  of  contact  are  sym- 
metrical, so  that  Q  may  be  taken  on  either  curve,  which  affords  the  necessary 

justification. 
t  Distance  may  be  taken  to  mean  either  (1)  shortest  distance,  or  (2)  distance 

measured  parallel  to  a  line  not  parallel  to  the  tangent  of  the  other  curve  at  P. 
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The  following  special  cases  are  of  the  greatest  importance. 

I.  Suppose  that  Q  lies  on  the  curve 

that  the  other  curve  is 

that  P  is  the  point  of  parameter  ̂ o  on  Q's  curve,  and  that  P  is  an  ordinary 
point  on  both  curves.    Then,  if  Q  is  the  point  of  parameter  t, 

PQX\t-to\, 

as  Q  —>  P  or  t  —>  to.    Following  the  general  rule,  it  is  necessary  and 
sufficient  for  contact  of  order  7i  that 

Writing  f{<f>,(t),<l>,{t)}  =  ̂ (tl 

and  applying  Taylor's  Theorem,  it  appears  that  if  $  (t)  has  n  +  1 
continuous  differential  coefficients  at  t  =  to,  the  necessary  and  sufficient 

conditions  fm'  contact  of  order  n  are  thit 

(4-212)       ̂ (#o)  =  ̂ '(0  =  --  =*^"KO  =  0,  $("^^)(^o)*0. 
II.  In  particular  suppose  that  the  two  curves  are 

If  we  take  the  latter  for  Q's  curve,  and  ̂ r  =  #  as  the  parameter,  then 

and,  if  the  parameter  of  P  is  Xq,  the  necessary  and  sufficient  con- 
ditions are 

(4-213)  /2(^o)=/l(^o),    /2'(^o)=/l'(^o),     ..., 

It  should  be  noticed  that  these  conditions  are  symmetrical  with 
respect  to  the  two  curves.  Moreover  this  form  of  equation  is  perfectly 
general  unless  the  tangent  to  the  curves  at  P  is  parallel  to  the  axis 
of  y.    But  in  this  case  the  equations  may  be  given  in  the  form 

^=fi(y),  ̂ =A(y'), 
leading,  as  before,  to  symmetrical  conditions.  It  is  therefore  a  matter 
of  indifference  on  w^hich  curve  Q  is  taken,  and  the  symmetrical  form  of 
our  original  definition  is  justified.  We  note  in  passing  the  following 
theorems. 

Theorem  4-22.  Two  curves  which  have  contact  of  order  n  (i.e.  of 
order  n  and  of  no  higher  order)  at  a  point  P  c?'oss  or  do  not  cross  at  P 
according  as  n  is  even  or  odd. 
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Theorem  4*23.  Two  curves  which  have  contact  of  order  n  with  a 
third  curve,  have  contact  at  least  of  order  n  with  each  other. 

The  preceding  treatment  does  not  apply  directly  to  the  case  of  two 
curves  whose  equations  are  both  given  in  parametric  form.  As  this  case 

seldom  occurs  in  practice,  and  the  preceding  discussion  is  theoretically 

complete,  we  shall  content  ourselves  here  with  a  reference  to  Picard, 

Vol.  I,  pp.  342  sqq.  The  case  of  the  two  curves  F^ix,  y)  =  0,  Fi(a.%  y)  =  0 
is  considered  by  Jordan,  loc.  cit.,  p.  420. 

§  4"30.  Osculating  curves.  Given  a  curve  and  an  ordinary  point 
P  thereon,  and  any  family  of  curves  depending  on  /^  +  1  parameters,  say 

(4*301)  /(ir,  y,  a^,  a^,  . . . ,  a«+i)  =  0, 

suppose  that  a  member  T  of  this  family  is  chosen  by  determining  the 

parameters  so  that  T  has  contact  of  the  highest  possible  order  for  the 

family  with  the  given  curve  at  the  point  P.  Then  2^  is  said  to  have 
osculating  contact  with  the  given  curve  at  theijoint  P :  the  two  curves 

are  also  said  to  osculate  or  to  be  osculating  curves. 

Suppose  that  the  given  curve  is 

and  that  P  is  the  point  t^.   The  conditions  for  contact  of  order  n  at  the 

point  P  are  by  4 '2 12 

$  (to)  =  ̂'  (#o)  =  .  • .  -  ̂  ̂ ""^  (to)  =  0,    $(-^^)  (to)  +  0, 

where  ^(t)  =f{<i>^{t),  <f>^  (t),  «i,  a^,  ...,  an+i}. 

In  general  these  7i  +  l  equations  will  be  just  sufficient  to  determine 

the  91  +  1  parameters  in  the  equation  of  the  family  (not  necessarily 

uniquely);  and  in  general  it  will  not  be  the  case  that,  when  the  a's 
have  been  so  determined,  $("+^)  (#o)  =  0.    Therefore  in  general  the  curve 
{or  curves)  of  the  family 

(4-301)  f(x,  y,  ̂ 1,  ̂ 2,  •••,  «n+i)  =  0 

thxit  has  {have)  osculating  contact  with  a  given  curve  at  the  point  P, 

has  {have)  contact  of  order  n  at  that  point. 

The  parameters  of  an  osculating  curve  T  are  determined  by  n  -v  1 
equations  which  written  in  full  are 

{^{to,  «i,  ̂ 2,    •••,  «n+i)  =  0, 

('4*302')  ^^(^0'  ̂ i»  ̂ 2)  •••)  ̂ J^a+i)  =  0, 

^<^(")(^0,  «1,«2,    ...,   «„+l)  =  0. 
F. 
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We  shall  denote  a  possible  set  of  real  values  of  the  parameters,  satis- 

fying these  equations,  by  a^,  a^,  ...,  a„^i,  and  the  corresponding- 
osculating  curve  by  T.  Suppose  now  that  ̂   is  a  curve  of  the  family 

which  passes  through  P*,  and  n  neighbouring  points  on  the  given  curve 

whose  parameters  are  to,  t^,  t^,  ...,  ̂ ».  The  parameters  (a's)  must 
satisfy  the  equations 

(4-303)         ̂ {tr,  «!,  a.2,  •••,  «n+i)  =  0,    (r  =  0,  1,  2,  ...,  n). 

Without  loss  of  generality  we  may  suppose  that  ̂ o  <  ̂i  <  •  •  •  <  ̂ »i-  Then, 

by  Rolle's  Theorem,  there  are  at  least  n  distinct  values  of  #,  between 

to  and  tn,  for  which  ̂ '  {t,  a^,  a^,  ...,  «n+i)  =  0 ;  by  a  second  applica- 
tion of  Rolle's  Theorem  there  must  therefore  be  at  least  n-\  distinct 

values  of  t,  between  t^  and  #„,  for  which  $"  (^i,  ̂i,  «2>  ••• ,  «n+i)  =  0,  and 
so  finally  at  least  one  value  of  ̂,  between  t^  and  ̂ „,  such  that 

^(")(#,  ai,a2,  .••,««+!)  =  0. 

The  system  of  equations  4*303  may  therefore  be  replaced  by  the  equi- 
valent system 

'^  (to,  «!,  ̂ 2,  •••,  a«+i)-0, 

(4-304)  -  ̂  ̂̂ *'  "^  ̂'^'  ai,  as,  •  •  • ,  a^+i}  =  0, 

,^<") {(to+  H-n),  fti,  ̂ 2, . . • ,  ««+i}  =  0, 

where  /^i,  /^s,  •••,  /^n  — ►  0  as  #i,  t^,  ...,  #„— >  to,  i.e.  as 

ft,   ̂2,       -.Qn-^P- 

The  equations  4*304  maybe  regarded  as  a  system  oi  n+l  equations 

determining  the  a's  as  functions  of  the  /x's.  If  the  Jacobian  t  of  this 
system  does  not  vanish  when 

/^l  =  /^  =  •  •  •  =  /^n  =  0,     «!  =  tti,    . . .  ,  ttn+i  =  Cln+i, 

that  is  m  general,  the  system  4*304  determines  a  unique  set  of  functions 
^1,  ̂2,  •••,  ̂ n+i,  such  that 

ar^OLr-^^r,    (r  =  1,  2,    . . .  ,  71  +  l), 

and  ̂ r  is  a  function  of /^i,  /xg,  •••,  /^n,  real  and  continuous  when 

|/.,|<8,    (r=l,  2,  ...,n), 

and  such  that  ^^  ->  0,    (r  =  1,  2,  . . . ,  w), 

when  /^i, /^,  •.., /^n— >0. 

*  It  is  convenient  to  take  this  form  of  hypothesis,  but  not  necessary.  K  may  be 
taken  to  be  a  curve  through  Qi ,  <32 ,  •  •  •>  Qn+\ ,  ̂  + 1  points  near  P,  and  Qi ,  Q2 ,  •  •  • .  Qn+i 
made  to  tend  to  P. 

t  Goursat,  Vol.  i,  Chap,  iii,  in  particular,  pp.  96-97. 
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It  follows  that,  if  Qi,  $2,  .-.,  fti  be  sufficiently  near  P,  a  unique*  curve 
^  of  the  family  can  be  drawn  through  P,  §i,  Q.2,  ...,  Qn,  which  is  such 

that,  when  Q^,  0^,  ...,  Qn-^F,  Kh&s  the  limit  T. 
In  particular  if  the  parameters  appear  in  f{cc,  y,  a^,  ...,  a„+i)  in 

such  a  way  that  a^,  o.^,  ...,  a„+i  are  determined  uniquely  by  the  con- 
ditions for  contact  of  order  n,  as  is  usually  the  case  in  practice,  the 

curve  K  will  be  genuinely  unique  and  tend  to  the  unique  limit  T. 
With  the  reservations  that  the  foregoing  analysis  has  disclosed,  we 

can  enunciate  the  following  theorem. 

Theorem  4'31.  In  general^  the  member  of  the  family  4*301,  which 
has  osculating  contact  with  a  given  curve  at  P,  is  a  limit  of  curves  of 
the  family  which  pass  through  P  and  n  neighbouring  points  on  the  given 
curve. 

This  theorem  enables  us  to  attach  a  meaning  to,  and  renders  per- 
missible, the  use  of  such  statements  as  "  Two  curves  cut  at  P  in 

n  coincident  points",  statements  which  are  formulated  for  the  sake  of 
generality,  e.g.  in  order  to  enable  us  to  say  that  any  two  conies  have 
four  common  points  real  or  complex.  Their  permissibility  being 
established,  such  statements  are  frequently  useful  and  illuminating. 

§  4'40.  Examples  of  osculating  curves.  We  have  defined  a  tangent  at 
P  as  the  limit  of  the  chord  PQ  when  Q—>P.  Since  any  straight  line  can  be 

put  in  the  form  ax -\- ̂ y  -  1  =0,  the  osculating  straight  Hne  at  the  point  P  is 
by  the  last  theorem  the  tangent. 

We  can  of  course  arrive  at  this  fact  directly  as  follows.  Suppose  the 

given  curve  is 
•^=</>i(0,  y=<^2(0: 

then  *  (0  =  0(^1  (0-1-/302(0-1; 

and  the  conditions  for  first  order  contact  at  ̂ o  are 

a0i(<o)+^</)2(O-l=O,   a(/)i'(g-|-^02'(g  =  O, 
so  that  the  osculating  straight  line  is 

X  y  1     =0' 

01  («o)     02  (O     1 

0l'(^o)       02' (^o)       0 

which  is  the  tangent.  It  should  be  remembered  that,  tQ  being  an  ordinary 

point,  0/  {to)  and  (f>2  {Iq)  are  not  both  zero. 

*  It  must  not  be  supposed  that  K  is  necessarily  the  only  curve  of  the  system 
through  P,  Q^,...Qn.  K  iB  the  only  curve  of  this  nature  whose  parameters  are 

"nearly  equal  to  the  a's ". 

4—2 
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We  should  also  observe  that  in  general  the  curve  does  not  cross  its 

tangent.    If  however  it  happens  that  the  contact  is  of  the  second  order  at  ̂ o> 

*'"-^^^^"^  a0/'(^o)+^02"(O  =  O, 
^^  0l'(^o)       02'  (^O) 

so  that  tQ  is  a  point  of  inflexion,  the  curve  will,  in  general,  cross  its  tangent. 

In  §§  3-10,  3-20  we  defined  the  circle  of  curvature  at  a  point  P{to)  and 

proved  that,  if  <\>i  {t)  and  02"  (0  are  continuous  at  ̂ q,  the  circle  of  curvature 
is  the  limit  of  a  circle  passing  through  P  and  any  neighbouring  points  ̂ i  and 

$2 J  when  ̂ 1,  Q2—>F.    The  equation  of  any  circle  can  be  put  in  the  form 

(^-a.)2  +  (y-6)2-i22^0, 

and  a,  6,  I^  are  determined  uniquely  by  the  conditions  of  second  order 

contact,  except  at  a  point  of  inflexion*. 
It  follows  from  the  last  theorem  (as  for  a  tangent)  that  the  circle  of 

curvature  and  the  osculating  circle  are  identical. 

Or  directly,  for  the  curve  y=f{x)^  supposing  that/"  {x)  4=  0,  we  must  have 

(4-41)  \x-a+f'{x){f{x)-h}=0, 

[\+P{x)+f"{x){f{x)-h}^0, 

so  that  /(^)_6=_1±£^), 

which  agree  with  the  equations  of  §  3*10.  We  notice  that  the  circle  of 
curvature  has  in  general  second  order  of  contact,  and  therefore  crosses  the 

curve  except  at  points  at  which,  besides  4"41,  the  equation 

•r7'+/'"(/-&)=o 
is  satisfied.    These  are  the  points  at  which 

(4-42)  3/"y'-(l+/'^)/"'  =  0; 

and  it  is  easily  verified  that  4*42  is  the  same  as  dR/ds  =  0. 

A  direct  corollary  of  Theorem  4*23  may  be  noticed,  namely  that  two 
curves  which  have  second  order  contact  at  any  point  have  the  same  osculating 

circle  at  that  point,  and  so  the  same  radius  of  curvature. 

§  4-430.  Extension  of  the  theory  of  osculating  curves.  In  §  430  we 
defined  those  members  of  a  given  family  of  curves  which  have  osculating 

contact  with  a  given  curve  at  P,  and  showed  that,  in  general,  any  such 

*  At  a  point  of  inflexion  the  tangent  has  second  order  contact  and  the  curvature 

is  zero.  This  may  be  conveniently  expressed  by  saying  that  "  the  radius  of  curva- 

ture is  infinite  and  that  the  circle  of  curvature  is  the  tangent". 
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osculating  curve  is  the  limit  of  members  of  the  family  which  have  n  +  l  points 
of  intersection  with  the  given  curve,  when  these  7i  +  l  points  of  intersection 

tend  to  P.    This  property  may  be  extended  as  follows.    Let 

(4-431)  g{^,^/,  «i,  «2,  ...,  a«-x)  =  0 

be  a  fixmily  of  curves,  depending  on  n  —  \  parameters,  all  of  which  curves 

have  contact  at  least  of  order  X  with  a  given  curve  x=(f)i  (t),  y  =  02(O)  ̂ ^  ̂ ^^ 

point  P(^o)-  Then,  as  before,  we  say  that  the  osculating  curve*  of  the  family 
is  that  member  of  the  family  which  has  contact  of  the  highest  possible  order 

with  the  given  curve  at  P.  This  osculating  curve*  will,  in  general,  have 
contact  of  order  n  and,  if 

*  (0  =  9  (01  (0,  <^2(0,  «1,  «2,  •..,  an-\}, 

the  conditions  for  contact  of  order  n  which  determine  the  a's  are 

(4-432)  *^^+^*>(g  =  0,     (r=l,2,  ...,7i-X). 
It  will  be  observed  that 

*(^o)  =  *<'M^o)  =  0,     (r=l,  2,  ...,X), 

for  all  values  of  the  parameters,  since  all  members  of  the  family  have  contact 

at  least  of  order  X.    We  can  now  argue  exactly  as  before  in  §  4-30  and  arrive 
at  the  following  theorem. 

Theorem  4-433.  In  general,  the  member  of  the  family  4-431,  which  has 
osculating  contact  with  a  given  curve  at  P,  has  contact  of  order  n  with  the  given 

curve,  and  is  the  limit  of  curves  of  the  family  which  [have  contact  of  order 

\  at  P  and]  pass  through  n  —  X  points  on  the  given  curve  in  the  neighbourhood 
of  P. 

As  an  example,  the  foregoing  theorem  may  be  used  to  identify  the 

Newtonian  circle  of  curvature  with  the  osculating  circle.  The  Newtonian 

circle  of  curvature  (§  3*40)  is  the  limit  as  Q-^P  of  the  circle  touching  a  given 
curve  at  P  and  cutting  it  at  Q.  The  foregoing  discussion  shows  that  this  limit 

is  a  circle  with  second  order  contact  with  the  given  curve  at  P,  that  is,  as 

such  a  circle  is  unique,  the  osculating  circle. 

§  4 '50.  Similar  problems  in  three  dimensions.  The  treat- 
ment of  the  distance  of  a  point  Q  from  a  surface 

/(^,  ?/,  z)  =  0, 
when  Q  is  near  an  ordinary  point  P  of  the  surface,  is  substantially  the 
same  as  the  treatment  for  plane  curves.    We  obtain  the  following 
theorem. 

Theorem  4*5 1.   If  P  (a,  b,  c)  is  an  ordinary  point  f  on  the  surface 

f(a^,y,z)=0, 
and  (T  is  the  distance  from  a  neighboring  point  Q  {x,  y,  z)  to  the  surface, 

*  Or,  curves. 

t  That  is,  a  point  such  that/„',  /j',//  are  not  simultaneously  zero. 
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measured  parallel*  to  a  straight  line  not  parallel  to  the  tangent  plane 
at  P,  th£n  o-  -  Af{a^,  y,  z\ 
where  A-¥0,  as  Q  —>P. 

Under  the  same  conditions y  if  o-  is  the  shortest  distance, 

asQ-^P. 
On  the  other  hand,  a  slight  complication  is  introduced  into  the 

treatment  of  a  twisted  curve 

/(^,  y,  z)  =  0,   g  {x,  y,  z)  =  0 

by  the  fact  that  there  are  tivo  equations.  Defining  P,  Q,  Q',  and 
(/,  w^,  n)  as  in  §  4*10,  P  and  Q'  lie  on  both  the  surfaces /=  0  and  g  =  0, 
and  Q  lies  oflP  at  least  one  surface,  say  /=  0.  It  is  moreover  assumed 

that  QQ'  is  not  parallel  to,  and  does  not  tend  to  parallelism  with,  the 
tangent  to  the  twisted  curve  at  P.  If  P  is  an  ordinary  point,  and 
(u,  Vj  w)  are  the  direction  cosines  of  the  tangent  to  the  curve  at  P, 
(w,  Vy  w)  satisfy  and  are  determined  by  the  equations 

(4-511)  ufa  +  vfi!  +  wfc  =  0,   iigd  +  vgd  +  wgc  =  Of. 

Since  by  hypothesis  (I,  m,  n)  or  the  limits  of  (/,  m,  n)  do  not  satisfy 
the  relations 

ujl  =  v/m  =  w/n, 

at  least  one  of  the  expressions 

Ifa  +  mfb  +  nfc\     Igd  +  mgd  -^  ngj 

is  not  zero,  and  does  not  tend  to  zero  ;  in  particular  if  Q  lies  on  g  =  0, 
but  not  on  /=  0, 

l/a'  +  mf,'  +  nfc'=¥Of, 

We  then  prove  that  cr  — >  0,  and  then  that 

/(^,  y,z)  +  <r  {l/d  +  mfi;  +  7ifc'  +  o(l)}  =  0, 

.    '  g{ir,y,z)  +  (T{lga'+mgd+ngc+o(l)}  =  0. 

*  Or,  in  a  direction  that  tends  to  parallelism  with. 
f  Since  /=  0  and  g  =  0  do  not  touch  at  P.  Points  at  which  /=  0  and  g  =  0  touch 

cannot  be  regarded  as  ordinary  points  on  the  curve  of  intersection.  The  equations 
f=0  and  51  =  0  maybe  regarded  as  a  pair  of  simultaneous  equations  determining  say 
X  and  y  as  functions  of  z.    Such  a  determination  requires  that  the  Jacobian 

d{f,g)ld{x,y) 

should  not  vanish.    At  a  point  of  contact  of /=0  and  g  =  0  all  the  three  Jacobians 

S{f,9)ld{x,y),    d{f,g)ld{y,z),    d  {/,  g)/d  {z,  x) 

vanish  and  no  pair  of  coordinates  can  be  determined  by  the  usual  theorems  as  func- 
tions of  the  third. 
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We  thus  have  two  expressions  for  a  of  which  one  at  least  gives  an 
intelligible  result. 

If  for  example,  Iga  +  mgi,'  +  ngc  is  equal  to  or  tends  to  0,  g  {x,  y,  z) 
will  be  of  a  higher  order  of  smallness  than/(ir,  y,  z)  [i.e.  g//—^  0],  and 

then  o-  f^  Af(£c,  y,  z)  is  correct  and  a-  (^  Ag  (a^,  y,  z)  is  false.  We  sum 
up  in  the  following  theorem. 

Theorem  4*52.  With  the  notation  of  Theorem  4*51,  the  distance  a- 
from  an  ordinary  point  of  the  curve 

f{x,  y,  5^)  =  0,  g  {x,  y,z)  =  0 

satisfies  whichevm^  of  the  relations 

a-  ~  Af{x,  y,  z\    (T<^A'g  (x,  y,  z) 
gives  a  greater  value  to  <t  (i.e.  the  lower  order  of  smallness). 

We  can  now  extend  our  definition  of  contact  of  order  n  to  any  pair 
of  curves  plane  or  twisted  or  to  a  curve  and  a  surface.  They  are  said 
to  have  contact  of  order  n  at  a  common  point  P  if  the  shortest  distatice 

from  a  neighbouring  point  Q  on  one  curve  to  the  other  curve  w  to  the 
surface  is  of  the  (n  +  l)th  order  of  smallness  compared  to  FQ. 

§4"60.  Contact  ofa  curve  and  a  surface.  Osculating  surfaces. 
After  §  4*50  the  following  statements  offer  no  difficulty. 

Theorem  4*61.  The  necessary  and  sufficient  condition  that  a  curve 
and  a  surface  f(x,  y,  z)  =  0  should  have  contact  of  order  nat  a  common 
point  P  is  that,  when  the  coordinates  of  a  neighbouring  point  Q  on  the 
curve  are  substituted  for  (^,  y,  z)  in  f(x,  y,  z),  fix,  y,  z)  should  be  of 
the  {n  +  l)th  order  of  smallness  compared  to  PQ. 

If  the  curve  is  given  by 

^=4>i  (t),   y=  Cf>2  (t),   z^^3  (t), 

and  ^(O=/{0iW,    <f>2it),    cf^sit)}, 

and  P  is  the  point  to,  the  above  condition  reduces  to 

(4-611)  ^  (^o)  =  ̂'  (O  =  . . .  - ^^'^^  (to)  =  0, 

together  with  the  inequality  $("+i)  (to)  =¥  0. 
By  taking  z  =f(x,  y)  for  the  surface  and  z  =f^  (x\  y  =f  (x)  for  the 

curve,  we  can  prove  that  if  a  curve  has  contact  of  order  n  (and  so  of 
no  higher  order)  with  a  surface,  it  crosses  or  does  not  cross  the  surface, 
according  as  n  is  even  or  odd. 

Given  a  surface  depending  on  ?^  +  1  parameters,  we  can  define  the 
osculating  surface  to  a  given  curve  at  a  given  point,  and  prove  that  it 
is  in  general  the  limit  of  surfaces  of  its  type  which  intersect  the  given 
curve  at  P  and  n  neighbouring  points. 
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§  470.    Contact  of  two  twisted  curves.    Osculating  curves. 
Suppose  one  of  the  curves  is  given  in  the  form 

/(^,  y.  2^)  =  0,   g  {x,  y,  z)  =  0, 
and  consider  an  ordinary  point  P.    The  reader  can  easily  prove  the 
following  theorem. 

Theorem  471.  The  necessary  and  sufficient  conditions  that  two 

twisted  curves,  one  of  which  is  given  by  f{x,y^z)  =  0,  g  {x,  y,  z)  =  0, 
should  have  contact  at  least  of  order  nat  P*  is  that,  ivhen  the  com^dinates 
of  a  point  Q  on  the  other  curve  are  substituted  for  (x,  y,  z)  in  f{x,  y,  z) 
and  g(x,  y,  z),  both  these  expressions  should  be  of  the  (n  +  \)th  order  of 
smallness  at  least  compared  to  PQ. 

If  the  contact  is  of  order  n,  one  at  least  of  fix,  y,  z)  and  g  {x,  y,  z^ 
must  be  of  the  (ji  +  l)th  order  of  smallness  exactly. 

If  the  other  curve  is  given  in  the  form   \ 

X  =  ̂i{t),    y  =  <f>2(t),    z  =  <t>.s(t), 

anH  ^(t)=f{Mt\<l>2(t),<t>2(t)}, 

^(t)  =  g{<f>,(t),c}>,(t),i>s(t)}, 
then  these  conditions  reduce  to 

while  one  at  least  of 

is  different  from  zero.   Therefore  there  are  exactly  2n  +  2  conditions  to  be 
satisfied  in  order  that  two  twisted  curves  may  have  contact  of  order  n. 

By  considering  two  curves  whose  equations  are  given  in  the  form 

y=fi(x),   z=f(x), 

y  =  g^{x),    z^g.,{x), 

we  can  show  that  the  conditions  of  contact  are  symmetrical  with  respect 
to  the  two  curves  ;  for  the  conditions  for  contact  at  least  of  order  n  at 

Xq  are 

■  f  G'^'o) = gi  {xo),  /i'  (^o)  =  gi  (^^),  •  •  • ,  /i^**^  (^o)  =  ̂i<">  (^o), 

These  conditions  may  be  stated  thus+:    The  conditions  for  contact 
at  least  of  order  n  at  x^  are  that  y,  z,  and  their  first  n  differential 

*  P  must  of  course  be  an  ordinary  point. 
t  There  is  an  obvious  case  of  exception.    We  must  naturally  suppose  that  the 

tangent  to  the  curves  is  not  perpendicular  to  the  .r-axis. 
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coefficients  with  respect  to  x  should  be  the  same  at  ̂ o  for  both 

curves*. 
Given  a  twisted  curve  depending  on  2n  +  2  parameters,  we  can 

define  the  osculating  curve  to  a  given  curve  at  a  given  point,  and  prove 
that  it  is  in  general  the  limit  of  curves  of  its  type  which  intersect  the 
given  curve  at  P  and  n  neighbouring  points. 

Given  a  twisted  curve  depending  on  2^+1  parameters,  we  can  in 

general  only  satisfy  the  conditions  for  contact  of  order  n-l.  We  then 
have  a  family  of  curves  with  contact  of  order  n-l,  but  no  curve  with 
contact  of  order  n. 

EXAMPLES  III 

(1)  The  locus  of  the  foci  of  parabolas  which  have  second  order  contact  at 

a  given  point  of  a  given  curve  is  a  circle. 

[From  Ex.  II  6  deduce  that,  if  p  is  the  radius  of  curvature  at  any  point  of 

a  parabola,  a  circle  of  radius  ̂ p  touching  the  parabola  at  that  point  passes 

through  the  focus.  All  the  parabolas  and  the  given  curve  have  the  same  circle 
of  curvature.    Hence  deduce  the  theorem.] 

(2)  Find  the  locus  of  the  centres  of  spheres  having  second  order  contact 

at  a  given  point  of  a  given  curve. 

[The  locus  is  a  line  parallel  to  the  binormal  through  the  centre  of  curvature. 

Use  the  results  of  §  3-620  to  identify  this  locus,  choosing  the  fundamental  triad 
as  axes  of  reference.] 

(3)  If  a  surface  S  touches  a  plane  P  along  a  curve  C,  the  tangent  to  C  at 

any  point  has  third  order  contact  with  >S'. 
[If  C  is  y=f{^),  2  =  0,  the  surface  S  in  the  neighbourhood  of  2  =  0  can  be 

put  in  the  form  z=F{i/—f{a;)}j  i^(0)=i^'(0)=0,  and  we  may  suppose  that 
f(0)=f  (0)  =  0.    The  tangent  to  C  at  the  origin  is  .r=^,  y=0,  2  =  0,  and 

^{t)  =  0-F{0  -fit)}  ̂ -\F"  (0)  {f{t)f  +  0  {f):\ 

(4)  At  each  point  M  of  a  surface  8,  and  through  each  tangent  line  to  the 

surface  at  J/,  passes  one  (aud  only  one)  circle  which  has  third  order  contact 

with  *S'.  Show  that  if  M  is  not  an  umbilic  there  are  in  general  ten  circles  which 
have  fourth  order  contact  with  >S'  at  M. 

[Darboux,  Bulletin  des  Sciences  Math.,  ser.  2,  tome  iv,  p.  348.] 

(5)  Define  the  osculating  plane  (after  chapter  iv)  to  a  given  curve  at  a 

given  point.  Show  that  it  is  unique,  has  in  general  second  order  contact  with 

the  curve,  and  is  crossed  by  the  ciu-ve.  Show  that  this  definition  is  consistent 
with  previous  definitions,  e.g.  that  of  Ex.  I  9. 

*  For  the  case  of  two  curves  both  given  in  parametric  form,  see  Picard,  Vol.  i, 
p.  359. 
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An  osculating  plane  having  contact  of  a  higher  order  is  called  stationary  ; 

find  the  condition  for  a  stationary  osculating  plane,  and  show  that  if  all  the 

osculating  planes  are  stationary  the  curve  is  a  plane  curve. 

[d.l.V.P.,  vol.  I,  p.  335,  vol.  II,  pp.  405  and  221.] 

(6)  Define  the  osculating  line  and  the  osculating  circle  to  a  twisted  curve 

and  prove  that  they  are  the  tangent  and  circle  of  curvature  respectively, 

having  in  general  contact  of  the  first  and  second  orders  with  the  given  curve. 

(7)  If  two  curves  have  contact  of  order  n  at  P,  and  Q,  Q'  are  two  points, 

one  on  each  curve,  such  that  QQ'^{PQY^'^^  show  that  PQIPQ'—>1  as 
Q-^P. 

[Picard,  vol.  i,  pp.  342,  359.] 

(8)  Find  the  conditions  for  contact  of  order  n  for  the  curves 

and  use  these  conditions  to  obtain  the  tangent  and  the  circle  of  curvature  at 

any  point  of  the  curve. 

CHAPTER  V 

THE  THEORY  OF  ENVELOPES* 

§  510.  The  definition  of  the  envelope  of  a  family  of  plane 

curves.    Consider  a  family  of  curves  depending  on  one  parameter,  viz. 

(5-101)  /fe^,a)  =  0, 

where  /(a?,  i/,  a)  has  as  many  continuous  differential  coefficients  with 
respect  to  ̂ ,  y,  and  a  as  may  be  mentioned :  usually  the  first  two  orders 
will  be  sufficient.  We  suppose  further  that  any  singular  points  on  any 

curve  (a)t  that  may  exist,  i.e.  points  (^,  y)  satisfying /=/a;' =/y' =  0, 
are  isolated  points.  We  proceed  to  investigate  the  way  in  which  the 

curve  (a)  is  placed  with  respect  to  a  "neighbouring"  curve  of  the 
system,  i.e.  the  curve  (a  +  8a),  where  8a  is  sufficiently  small. 

Let  3/ be  a  point  (a;,  y)  on  the  curve  (a)  which  is  an  wdinary  point 

of  the  curve,  so  that,  for  these  values  of  ̂r,  y,  and  a,  at  least  one  of /c', 
fy  is  not  zero.  It  follows  that  a  region  of  values  of  x^  y^  and  a  can 
be  determined  including  M^  and  containing  no  singular  point  of  any 

*  d.l.V.P.,  Vol.  n,  p.  408. 
f  I.e.  the  curve /(a;,  ?/,  a)  =  0,  for  which  the  parameter  has  a  particular  value  a. 

/ 
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admissible  member  of  the  family*.  The  equation  of  the  neighbouring 
curve  is/(^,  ?/,  a  +  8a)  =  0,  which  can  be  written  in  the  form 

(5-102)  f{x,  y,  a)  +  8a/;'  -f  0  {^a^  =  0. 

The  shortest  distance  o-  of  3/ from  this  curve  satisfies  the  relation  t 

(T  =  A/(W,1J,  a  +  8a)(l  +  €), 

where  ̂   4=  0,  (^r,  y)  are  the  coordinates  of  M,  and  c  — ^  0  when  o-  — >  0. 
Since  31  is  an  ordinary  point,  it  is  easy  to  see  that  (r—>0  when  8a  — ►  0, 
so  that  €  — >  0  when  8a  — >  0.    Therefore,  as  8a  — >  0, 

o-  =  M/a'8a  +  0(8a)2}  {1+0(1)}. 

This  distance  will  be  of  the  second  or  higlier  order  of  smallness  if 

and  only  if  / '  =  0. 

An  ordinary  point  on  the  curve  (a)  whose  distance  from  the  curve 
(a  +  8a)  is  of  the  second  order  of  smallness  at  least  is  called  a 
characteristic  point  of  the  curve  (a).  These  points  are  ordinary 

points  at  which  fa  =  0.  It  may  happen  :|:  that  a  curve  (a)  is  entirely 
composed  of  characteristic  points,  but  in  general  they  will  be  isolated. 

Definition.   The  envelope  of  the  family 

fipc,  y,o)  =  Q is  the  loctcs  of  its  isolated  characteristic  points. 

If  there  is  an  envelope,  its  points  satisfy  the  equations 

(5-11)  /-/a'=0, 
and  the  equation  of  the  envelope  must  therefore  be  sought  for  by 
eliminating  a  between  these  two  equations,  or  by  solving  them  for  aj 
and  y  in  terms  of  a  and  so  obtaining  the  parametric  representation 

a^  =  a^(a),  y  =  y(a). 

The  complete  result  of  such  an  elimination  or  solution  is  called  the 

a- discriminant  of/.  We  cannot,  however,  be  certain  that  any  curve 
contained  in  the  a-discriminant  forms  part  of  the  envelope.  For 

instance,  it  may  be  possible  to  satisfy  both  equations  5'11  by  a  value 
of  a  independent  of  .r  and  y,  and  then  the  corresponding  curve  (a)  will  be 

*  I.e.  there  exists  a  5  such  that  if 

\^-x\i^8,    \v-y\^8,    \A-a\^d, 

it  is  never  true  that  f^'  (|,  t],  A)=f'  (^,  ri,  A)  =  Q.   In  this  region  of  values  of  (.r,  y),  no 
curve  of  the  family  whose  parameter  satisfies  |  ̂  -  a|  ̂  5  has  a  singular  point. 

t  See  Theorem  4-12. 

X  This  and  similar  statements  are  illustrated  by  examples  in  §  5*20. 
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composed  entirely  of  characteristic  points.  Such  a  curve  will  be  in- 

cluded in  the  eliminant  of  5"11,  and  so  is  part  of  the  a-discriminant, 
but  not  part  of  the  envelope.  Again,  suppose  that  the  family  contains 

a  locus  of  singular  points  given  by  ;^'  =  ̂   (a),  y=y  (a),  the  point  on  this 
locus  corresponding  to  a  being  a  singular  point  on  the  curve  (a).  The 
coordinates  {x,  y)  of  these  singular  points  satisfy  the  equations 

/-o, /,'  =  o, /;  =  o. 
They  also  satisfy  the  equation  obtained  by  differentiating  the  first 
equation  with  respect  to  a,  viz. 

where  dxjda  and  dyldo.  are  determined  from  the  equations  of  the 
singular  point  locus.     Therefore  at  all  points  of  this  locus, 

fa  =  0. 
Hence  any  locus*  of  singular  points  of  curves  of  the  family  will  be  part 
of  the  a-discriminant,  and  must  be  distinguished  from  the  envelope. 
When,  however,  these  two  classes  of  curves  have  been  identified  and 

discarded,  any  remaining  curve  or  curves  obtained  in  the  foregoing 
manner  constitute  the  envelope  of  the  system. 

§  5*20.    Examples,  (i)  Consider  the  family 

ay+(2a+l)A  =  0, 
where  /=0,  A  =  0  are  the  equations  of  any  distinct  regular  curves.  The 
equations  to  be  satisfied  by  a  characteristic  point  are 

a2/+(2a  +  l)A  =  0, 

a/+/i  =  0, 
which  are  satisfied  by  every  point  on  the  curves  a  =  0,  which  curve  is  /i=0, 

and  a=  -  1,  which  curve  is  h=f.    The  eliminant  is 

A(A-/)=0, 

so  that  in  this  case  there  is  no  envelope. 

*  In  general  no  such  locus  exists.    Singular  points  of  members  of  the  family  are 
all  the  points  determined  by  the  equations 

We  have  assumed  that  such  points  occur  for  isolated  values  of  x  and  y  for  any  given 
value  of  a.  In  general  they  will  also  occur  only  for  isolated  values  of  a,  i.e.  for 
isolated  members  of  the  family.  It  is  easy  to  see  by  constructing  examples  that  such 

isolated  singular  points  may  or  may  not  lie  on  the  a-discriminant. 
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(ii)    Consider  the  family 

The  curve  (a)  has  a  cusp  at  (0,  a)  and  therefore  the  ̂ =0  is  a  locus  of  singular 

points.    But  /a'  =  -  2  ( y  -  a)  =  0, 

so  that  the  eliminant  is  .i^  =  0, 

which  is  the  cusp  locus,  and  therefore  not  an  envelope.    There  is  in  fact  no 
envelope. 

§  5 '30.  Properties  of  the  envelope.  Suppose  that  the  curve  (a) 
is  not  entirely  composed  of  characteristic  points.  In  this  (the  general) 

case,  the  equations  /=/»'  =  0  determine  a  number  of  isolated  points 
(I,  rj)  on  the  curve  (a)  which  are  in  general  characteristic,  but  may  be 
singular  points.  Let  (x,  y)  be  any  point  of  intersection  of  the  curves 

(a)  and  (a  +  8a) ;  then  cc  and  y  are  determined  by  the  equations 

(5-301)  f{x,  y,  a)  =  0,  f{x,  y,a+  So)  =  0. 

By  an  application  of  Rolle's  theorem,  these  may  be  reduced  to  the 
equations 

(5-302)  /{a-,  y,  a)  =  0,  /«'  (^,  y,<^  +  f^)  =  0, 
where  0  <  |  /a  |  <  |  8a  | . 

When  /x  =  0  the  solutions  of  equations  5-302  are  the  points  (i,  r}) 
specified  above.  In  order,  therefore,  to  prove  that  the  limit,  as  Ba  —^  0, 
of  any  point  of  intersection  (x,  y)  is  a  characteristic  or  singular  point 

of /r::0,  it  is  ouly  necessary  to  show  that  any  solution  of  5-302  deter- 
mining X  and  y  as  functions  of  /a,  is  such  that  x — > $  and  y  —>r)  as 

fi-^O.  This  necessary  fact  follows  at  once  from  implicit  function 

theorems*  if  the  Jacobian  J  of  the  system  does  not  vanish,  i.e.  if 

when  the  variables  {x^  y^  fx)  take  the  system  of  values  (^,  >7,  0)t. 

Even  if,  however,  /  =  0,  it  still  remains  true  that  x-^i  and  y^>r)&& 

fji—^0.  Consider  for  example  a  characteristic  point  {$,  rj)  at  which 
•7=0.  We  may  suppose  without  loss  of  generality  that  an  arc  of  the 

curve /=  0  including  this  point  can  be  put  in  the  form  y-g  (x).  Sub- 
stituting this  value  of  y  in  fa  we  see  that  possible  values  of  x  must 

satisfy  the  equation 

(5-303)  h  {x,  m)  =  fj  {x,  g  {x),  a  +  /x}  =  0, 

*  Goursat,  Vol.  i,  Chap,  iii,  pp.  96,  97. 
+  The  geometrical  meaning  of  J^O  is  that  {^,  77)  is  not  a  singular  point  of /=0, 

or  of  /a'  =  0,  and  that  the  curves /=0  and/a'  =  0  do  not  touch  at  (^,  -n). 
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where  h  {x,  0)  vanishes  for  cc  =  ̂.    It  may  be  verified  that  the  condition  | 

J=  0  is  equivalent  to  h^  =  0.     The  point  (i,  0)  may  perhaps  be  a  '■ 
singular  point  on  the  (^,  ̂t)  curve*.    But  whether  it  is  or  not,  k(ic,  ft)  i 
vanishes  by  hypothesis  for  values  of  /x  in  the  neighbourhood  of  /u.  =  0.  \ 
We  can,  therefore,  by  the  arguments  of  chapter  vi,  prove  that  there  are  ! 
one  or  more  real  branches  of  the  (^r,  /x)  curve  in  the  neighbourhood  of  \ 
a,  0)  such  that  ] 

^  =  1  +  ̂1  W,  -] 
where  Oi  (/x)  — ^  0  as  /a  — >  0.  The  corresponding  value  of  y  takes  the  form  i 

1/  =  rj  +  e^(^i),  ] 

where  0^  (//,)—►  0  as  /w.  — ►  0,  and  0^  (/x)  is  uniquely  determinate  when  •  j 
$1  (/x)  is  known.    The  proposition  follows  as  before.  i 

We  have  so  far  excluded  singular  points  of  /=  0.    An  examination  j 
of  Example  (ii)  above  shows  that  the  limit  of  a  point  of  intersection  j 

may  in  fact  be  a  singular  point  of /=  0.    Since,  however,  singular  point 
loci  are  excluded  from  the  envelope,  we  need  not  discuss  this  case  ; 
further,  admitting  that  it  actually  occurs.    We  have  proved  therefore 
that  the  limit  of  any  point  of  intersection  of  neighbouring  curves  is  an  \ 
isolated  characteristic  (or  perhaps  singular)  point.  \ 

The  converse  of  this  proposition  is  not  always  true.  We  shall  content  [ 
ourselves  with  proving  it  with  the  help  of  the  explicit  assumptions  that 

J" 4=  0,  and /aa"  4=  Of.  We  wish  to  prove  that  if  ($,  rj)  is  such  an  isolated 
characteristic  point  on  the  curve  f=0,  and  (;r,  y)  a  neighbouring  pointy 
on  the  curve,  then  a  value  of  8a  can  be  found  such  that  i 

f(x,y,a+8a)  =  0,  I 
and  Ba—^0&S£c-^$  and  y —>  rj  along /(.r,  y,  a)  =  0.   Since  J=\=0,  there  '[ 
exists  a  unique  solution  of  the  equations  1 

f(^,  !/,  ̂ )  =  0,  fa'  (x,  y,a  +  fx.)  =  0,  I 
near  (|,  r)),  such  that 

£c  =  i  +  e,{fi),  y  =  r)  +  e,{fi),  = 

where  0^  (/u,)  —^  0  and  $2  W  — >  0  as  /x  — >  0.    Since  faa"  =#  0,  Oi  (/«,)  and  \ 
Oz^fi)  are  not  identically  zero.    Given  a  point  (a:,  y)  near  (^,  r/)  on/=0  i 
we  can  therefore  find  a  unique  number  /xj ,  near  0,  such  that  j 

fa(a^,y,a  +  fi,)  =  0.  j 

*  The  point  will  be  a  singular  point  when  in  addition  ■ 

hfj.'  =faa"  =  0.  J 

t  When  J=0  for  all  values  of  a,  there  may  be  an  envelope  in  spite  of  the  fact  ' 

that  neighbouring  curves  do  not  intersect.  See  §  5 '50.  We  call  points  at  which  J+O  \ 
and/aa"  +  0  cojnpletely  ordinanj  -points.    See  §  5-310.  i 
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By  an  application  of  Taylor's  theorem  /«'  {x,  y,  ol  +  fj-)  can  be  cast 
into  the  form 

(5-304)  a  (x  -0(1  +  «i)  -  V  (1  +  €2). 

In  5'304,  y  has  been  eliminated  by  using  /=0;  a  can  only  vanish 

with  /  and  therefore  a^O;  b  can  only  vanish  with/aa"  and  therefore 
^  +  0 ;  and  ej ,  €3  — >  0  as  ̂   — >  ̂  and  /a  — >  0. 

Now  since  /(a?,  y,  a)  =  0, 

f(x,  y,a  +  ix^)=      fj  (x,  y,  a  +  fx)  dfx 
Jo 

=  «/x2  (^  -  0 (1  +  €1)  -  ̂bfi^^  (1  +  €2). 

Since  5 "304  must  vanish  for  /a  =  /Xj,  a{x- ^  and  6/a  will  have  the  same 
sign,  which  may  be  supposed  positive.  It  follows  that,  as  /xi  is  unique, 

fa  {oc^  ?/,  a  +  /x)  is  positive  when  0  ̂  /u.  <  /ai  and  vanishes  and  changes  sign 

at  Ml.  Therefore  f(x,  y,a  +  /wj  >  0,  while  by  taking  fx^  sufficiently  large 

we  can  ensure  that  f(x,  y,a  +  ̂ tg)  <  0.  At  the  same  time  the  requisite 

value  of  /Jt2  can  be  made  as  small  as  we  please  by  suitably  diminishing 

\x-$\.    There  exists  therefore  a  value  of  3a,  such  that 

/(^,3/,  a+8a)  =  0,      (|/Xi!<|8a|<|/X2|); 

moreover  8a  — > 0  as  x—^i,  y—^%  and  therefore  the  proposition  is 
proved.    We  summarize  this  discussion  in  the  following  theorem. 

Theorem  5*31.  The  locus  of  the  limits  of  the  in  tersections  of  neighbour- 
ing curves  is  in  general  the  envelope,  but  may  be  a  locus  of  singular 

points.  Conversely,  the  envelope  is  in  general  (./=*=  0,  /aa'  +  O)  tJie  locus 
of  the  limits  of  these  intersections,  but  there  may  be  an  envelope  when 

neighbouring  curves  do  not  intersect. 

It  should  be  observed  that  "the  locus  of  the  limits  of  the  inter- 

sections of  neighbouring  curves  which  are  not  singular  points  "  is  not 
suitable  for  a  definition  of  the  envelope  of  the  system,  for,  as  is  shown 

in  §  5 "50,  on  that  definition  a  curve  is  not  the  envelope  of  its  circles  of 
curvature. 

§5'310.  Properties  of  the  envelope  continued.  Contact  with 
members  of  the  family.    We  now  proceed  to  consider  the  behaviour 

of  the  envelope  in  relation  to  members  of  the  family  at  ordinary  points 

of  the  envelope.    It  is  necessary  to  start  with  a  warning.    It  is  natural 

for  such  arguments  to  take  any  arc  of  the  envelope  as  expressed  in 
the  form  ,  .  .  . 

x  =  x{a),    y  =  y{a), 
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where  a  is  the  parameter  of  the  point  oil  the  envelope  corresponding 

to  the  curve  (a).  In  order  that  we  may  do  so  without  detailed  investi- 
gations, it  is  necessary  to  apply  the  Implicit  Function  Theorem  to 

the  equations 

so  as  to  express  x  and  y  as  functions  of  the  parameter  a. 

This  is  possible  as  above*  if 

(5-311)  /=|yy    /a/  1+0 

for  the  syslem  of  values,  (;ro,  y^^-,  ««)  say,  in  the  neighbourhood  of  which 
we  wish  to  discuss  the  behaviour  of  the  envelope.  The  behaviour  of  the 

system  in  the  neighbourhood  of  an  isolated  point  at  which  J'=  0  is  very 
interesting  geometrically,  and  we  shall  return  to  this  case  later.  When 

./-  0,  we  cannot  assert  without  further  investigation  that  the  envelope 
can  be  represented  by  x=  x (a),  y  =  y (a),  where  x (a)  and  y  (a)  have 
differential  coefficients  at  a  =  oo.  In  general  we  shall  find  that  in  such 
a  case  x  {a)  and  y  {p.)  tend  to  infinity  as  a  — ►  ao.  We  therefore  assume 

for  the  present  J"  4=0. 
Let  M  be  a  point  on  the  envelope,  of  coordinates  {x,  y)  and  para- 

meter a,  at  which  J^O.  It  is  therefore  an  ordinary  point  on  the 
curve  (a).  Then  in  the  neighbourhood  of  this  point  the  envelope  can 
be  put  in  the  form 

x  =  x{a),  y  =  y(a), 

where  x(a\  y'(a)  exist  and  are  continuous. 
The  coordinates  of  M  are  functions  of  a  which  satisfy  identically 

fix,  y,  a)  =  0,  /«'  {x,  y,  a)  =  0. 
On  differentiating  with  respect  to  a,  we  find  that  they  also  satisfy 

^'  W/ax"  +  y'  (o)fay'  +fad'  -  0. 
Now  fa  ̂  0,  and  therefore,  since  J^  0,  the  necessary  and  sufficient 

condition  that  x  {a)  and  «/'(«)  should  not  be  simultaneously  zero  is 

Let  us  therefore  suppose  that  M  is  a  point  on  the  envelope  at 

which  /+0  and  /aa"=NO.  Such  a  point  may  be  called  a  completely 
ordinary  point ;  and  in  general  all  points  will  be  such  with  the  exception 
of  isolated  points.    At  M 

^'Mfx'+y'(cL)fy=0, 

*  Goursat,  loc.  cit. 
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but  as  neither  both  fj,  and  /J/  are  zero,  nor  both  x'{a)  and  y(a),  it 
follows  that  the  tangents  to  the  curve  and  the  envelope  are  parallel, 
I.e.  identical.    Therefore  the  envelope  touches  the  curve  (a)  at  M. 

Conversely,  let  ̂   be  a  curve  which  at  every  point*  touches  a 

member  of  the  family.  Then  iE'  is  a  locus  of  points  of  contact  with 
members  of  the  family,  and  therefore,  assuming  that  in  general  only  one 

member  of  the  family  touches  JS^  at  a  given  point,  the  coordinates  {x,  y) 
of  a  point  of  E  may  be  expressed  as  functions  of  a,  x  (a),  y  (a)  say, 
which  satisfy  identically 

f{x,  y,  a)  -  0. 
By  definition,  the  curve  E  has  everywhere  a  tangent,  but  we  cannot 

therefore  assert  that  x  (a)  and  y  (a)  must  in  general  exist  and  be  not 
both  zero ;  and  in  fact  no  obvious  method  of  proof  on  these  lines 
presents  itself.  We  therefore  abandon  the  symmetry  of  the  parametric 
representation  and  proceed  as  follows. 

Let  (^0,  Vv  be  any  point  on  E  at  which  E  is  touched  by  the  unique 
member  of  the  family  (ao).  Let  (x,  y)-be  a  neighbouring  point  on  E  at 
which  E  is  touched  by  (a).    We  have  therefore 

/(^o,  y^'>  «o)  =  0,  f{x,  y,  a)  =  0. 

Now  let  (xj  y)  — >  (^To,  y^).    Since  f{x,  y,  a)  is  a  continuous  function  of 
the  variables, 

f{.x,y,a)=f{x„y,,a)  +  o{i). 

Therefore,  as  {x,  y)  — »  (^o,  y^, 

f{x„y,,  a)-^0. 
If  tto  is  the  only  root  of  the  equation  f(xo,  y,y,  a)  =  0,  then,  since 

f(xo,yo,  «)  is  a  continuous  function  of  a,  it  follows  that  a^ao  as 

(x,  y)  — >  (^0,  yo)-  In  other  words,  neighbouring  points  on  the  curve  E 
correspond  to  neighbouring  values  of  a.  This  result  however  still 
remains  true  when  the  root  a^  is  not  unique,  provided  that,  as  we  have 
assumed,  the  curve  (a^)  is  the  only  member  of  the  family  which  touches 
^at  (.^0,  ?/„). 

Suppose  for  simplicity  that  there  is  only  one  other  root  a^ ,  so  that 

/(^o,  yo»  tti)  =  0,  but  the  curve  (a^)  does  not  touch  ̂ at  {xq,  y^.  The 
argument  can  be  extended  at  once  to  the  case  of  any  finite  number  of 
other  roots,  so  that  there  is  no  loss  of  generahty.  In  this  case  we  can 

establish  as  before  that,  as  {x^  y)— *(^0)  ̂ o)>  either  (1)  d— >ao,  w 
(2)  a  — >  Oi,  or  (3)  there  exists  an  infinite  sequence  of  values  of  a  for 

*  With  the  possible  exception  of  isolated  points. 
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tvhich  a  — >  aj,  while  the  remaining  values  are  such  that  a— >  ap.  Cases 
(2)  and  (3)  may  be  ruled  out  by  the  following  arguments.  In  the 

neighbourhood  of  {xq,  y^,  £J  is  a.  curve  having  everywhere  a  tangent. 

Since  this  tangent  is  always  also  the  tangent  at  (iv,  y)  to  the  curve 

/(^,  y,  a),  for  values  of  a  in  the  neighbourhood  of  ao  and  aj,  we  may 
suppose  without  loss  of  generality  that  it  is  never  parallel  to  the  axis 

oiy.  Hence  we  may  suppose  that  E  is  represented  by  an  equation  of 

the  form  y  =  g  {x),  where  g'(x)  exists  at  all  points  of  the  interval.  Let 
m^  and  twi  be  the  slopes  of /(a*,  y,  (h)  =  0  and  f{x,  y,  a^)  =  0  at  (^o,  ̂o). 

Then  mo^mi.  Moreover  g'  (^o)  =  ̂ o  and,  in  cases  (2)  and  (3),  g'  (x) 
assumes  a  series  of  values  tending  to  tWi  for  values  of  x  in  the  neighbour- 

hood of  Xq.  This  however  is  impossible  by  a  theorem  due  to  Darboux* 
which  states  that,  if  f{x)  has  a  differential  coefficient  at  all  points  of  an 

interval  {ay  b),f'(x)  cannot  pass  from  one  value  to  another  in  this  interval 
without  assuming  every  intermediate  value.  It  follows  that  a  — >  ao  in 
all  cases,  which  is  what  we  required  to  prove. 

Now  consider  the  points  {x,  y,  a)  and  (x  +  Sx,  y  -^  By,  a  +  8a)  on  B. 
Then  E  has  a  tangent  at  (Xy  y)  which  may  without  loss  of  generality  be 

supposed  not  parallel  to  the  axis  of  y. 

Since  /(^r,  y,  n-)  =  0,  f(x  +  Bx,  y  +  By,  a  +  8a)  =  0,  we  have 

^f.\o)  +  Byf;(e)  +  8afj(e)  =  Oy 

where  fx'(0),  ... ,  denote  fx'(x  +  08x,  y  +  6Sy,  a  +  6Sa),  ... ,  and  0  <  ̂  <  1^ 
Now  let  Bxy  8y—^0  along  E.    We  have 

But  /.'(«)  +  g/;(e)  -^/j + y/;, 
where  y  refers  to  the  curve  E.  The  limit  y  exists  because  E  has  a 

tangent  at  (^,  y).  Since  E  touches  f{x,  y,a)  =  0  at  {x,  y),  fj  +  yfy  =  0. 

Also/a'(^)  -^/a'.  Therefore  either//  =  0,  or  8a/8^  ->  da/dx  =  0.  The 
latter  alternative  may  happen  at  isolated  points,  but  cannot  happen 

everywhere  in  an  interval  unless  the  curve  E  is  identical  with  a 

member  of  the  family.    Hence  in  general  fa  =  0. 
If  follows  that  E  is  a  locus  of  isolated  characteristic  points  or 

of  singular  points,  and  this  latter  case  may  actually  occur  f.  We  have 
therefore  proved  the  following  theorem. 

*  d.l.V.P.,  Vol.  I,  p.  97. 

t  The  family  of  curves  y^-{x-  a)'^  have  cusps  at  (a,  0).  The  line  y  =  0  touches 
all  members  of  the  family  and  touches  one  and  only  one  at  every  point,  and  is  also 
the  cusp  locus. 
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Theorem  5'312.  The  envelope  touches  the  curve  (a)  at  all  its  isolated 
characteristic  points  that  are  completely  ordinary  points  of  the  envelope. 

Conversely^  a  curve  which  toucJies  just  one  member  of  the  family  at 
every  point  is  in  general  the  envelope  {or  a  part  of  it),  but  may  be  a  locus 
of  sing  u  lar  points. 

This  theorem  supplies  a  possible  alternative  definition  of  the  envelope,  as 

"the  most  complete  curve  that  touches  a  member  of  the  family  at  every  point, 

and  which  does  not  contain  a  locus  of  singular  points".  The  theory  is  de- 
veloped from  this  point  of  view  by  Goursat  (Vol.  i,  p.  511);  owing  however 

to  the  difiSculty  of  avoiding  a  priori  assumptions  as  to  the  nature  of  x'  (a)  and 
y  (a),  in  the  proof  that  on  the  envelope  /a'  =  0,  this  definition  does  not  appear 
to  be  so  suitable  as  the  one  chosen  here. 

A  corollary  of  this  last  theorem  is  that  any  curve  is  the  envelope  of  its 

tangents.  A  direct  proof  is  not  without  interest.  Let  y=f{x)  be  the  given 
curve,  so  that  the  tangent  at  the  point  a  is 

y-/(«)-(.r-a)/'(a)  =  0, 
and  the  coordinates  of  the  characteristic  points  satisfy 

{x-a)r{a)  =  0. 
If  /"(a)  =  0,  every  point  on  the  tangent,  which  is  then  inflexional,  is  a  char- 

acteristic point :  discarding  this  case,  the  isolated  characteristic  point  of  the 

tangent  at  a  is  the  point  x  =  a,y=f{a),  and  the  locus  of  these  points  is  the 
given  curve. 

§  5-40.  Order  of  contact  of  the  envelope  and  the  curves.  Meaning 
of  J=0.  We  have  already  proved  that,  at  any  completely  ordinary  point  a  of 

the  envelope,  the  envelope  touches  the  curve  (a).  It  is  easily  seen  that  the 

contact  is  necessarily  first  order  contact  at  such  a  point,  for  J=^  0  is  a  necessary 

condition  for  contact  of  higher  order  than  the  first* 
We  now  consider  a  point  a  on  the  envelope  which  is  an  ordinary  point  of 

the  curve  (a),  but  at  which  J=0 ;  in  general /aa" 4=  0  at  such  a  point ;  we  shall 
suppose  that  this  is  the  case.  Near  such  a  point  we  cannot  assume  at  once 

that  the  parametric  representation  of  the  envelope  .r  =  ̂   (a),  y=y  (a)  is  possible, 
where  x  (a)  and  y  (a)  possess  differential  coefficients.  We  can  prove  however 

by  differentiating  along  the  envelope,  exactly  as  in  the  latter  part  of  Theorem 

5'312,  that  a'  —  daldx  exists  at  this  point  and,  because  J=0,  is  in  fact  zero,  and 
that  the  envelope  touches  the  curve  (a). 

One  aspect  of  the  geometrical  meaning  of  the  conditions  J=  0,  /«»"  4=  0  at 
an  isolated  point  of  the  envelope  is  therefore  that  the  distribution  of  points 

of  contact  of  members  of  the  family  along  the  envelope  is  exceptionally  sparse 
near  such  a  point. 

We  can  however  go  further  than  this.  We  can  prove  step  ̂ by  step,  with 

suitable  assumptions  as  to  the  nature  of  f{x,  y,  a),  that  a",  a", ...  exist  when 

*  A  proof  is  sketched  in  Ex.  IV,  3. 
5—2 
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we  differentiate  along  the  envelope.    Now  the  envelope  satisfies  identically 

f{x^y^  a)  =  0  and /a' (^,3/,  a)  =  0,  and  therefore  satisfies  identically 

(5-401)  /x'+//;  +  a7a'  =  0, 

(5-402)  /ax"+y7a;'  +  a7aa"-0. 

Differentiating  5 '401  again  along  the  envelope,  and  using  5*402  to  simplify  the 
result,  we  obtain 

(5-403)        /,/ + 2^7^;'  +y'l^;;'  +y7;  -  «' 'Aa" + a'7a' = 0. 

Differentiating  5*403,  and  using  the  facts  that  a'  =  0  at  the  point  a,  and  that,  as 
always,  fJi = 0,  we  obtain 

(5*404)      f^r  +  yf^y"'  +  W'f,yy"'+y'\fyyy"' 

+  ̂ fU"  +  ̂'y"fyy"-Vy"'fy'  =  0. 
Equation  5*403  itself  reduces  to 

(5*405)  /,;'  +  2y'f,y"  +y'^fyy"  +y"fy'  =  0.       . 

But  5*404  and  5*405  are  precisely  the  expressions  we  obtain  when  we  de- 

termine y"  and  y'"  for  the  curve  (a)  by  differentiating  f{x,y,  a)  =  0  with  a  con- 
stant. It  is  easily  verified  that  in  general  y^  is  different  for  the  curve  and 

the  envelope.  At  this  point  therefore  the  curve  (a)  and  the  envelope  have  in 

general  contact  of  the  third  order,  i.e.  two  orders  higher  than  normal.  We  can 

collect  these  results  into  the  following  theorem. 

Theorem  5*41.  At  isolated  points  a  on  the  envelope  at  which  J=0,  /aa"4=0, 
and  the  curve  (a)  hcLs  an  ordinary  pointy 

(i)  the  envelope  has  in  general  third  order  contact  with  the  curve  (a), 

(ii)  daldx=da/dy=0*j  so  that  the  distribution  of  points  of  contact  of 

members  of  the  family  along  the  envelope  is  exceptionally  sparse-^. 

The  condition  7ia"=0,  ̂ 4=0,  is  in  general  satisfied  at  isolated  points  of  the 

envelope.  On  referring  to  §  5*310,  we  see  that  this  condition  implies  that 

x'  {a)=y'  (a)  =  0,  so  that  the  point  is  a  singular  point  on  the  envelope.  It  is  in 
fact  in  general  a  cusp  of  the  first  species  (see  Chapter  VI). 

If  both  the  conditions  J=0  and/aa"  =  0  are  satisfied  at  an  isolated  point  of 
the  envelope,  the  state  of  affairs  is  more  complicated.  In  general  the  envelope 

has  two  branches  through  the  point,  both  of  which  have  second  order  contact 

with  the  curve  (a).  In  certain  cases  one  of  these  branches  may  coincide  with 

the  curve  (a)  J.  It  is  then  no  longer  part  of  the  envelope,  but  still  remains 

part  of  the  a-discrimiuant.  For  the  further  study  of  these  and  other  singularities 

of  the  envelope,  or  more  generally  of  the  a-discriminant,  the  reader  should 
refer  to  Bromwich  and  Hudson,  loc.  cit. 

*  Assuming  that  the  tangent  to  the  curve  or  envelope  is  parallel  to  neither  axis 
of  coordinates. 

t  In  this  connection  the  reader  should  refer  to  a  paper  by  Bromwich  and 

Hudson  [Quarterly  Journal,  Vol.  xxxiii,  p.  98)  called  "  The  discriminant  of  a 

family  of  curves  or  surfaces." 
X  An  inflexional  tangent  is  the  simplest  example.  The  reader  should  verify 

that  J=0  and/aa"  =  0  in  this  case.     See  p.  67. 
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^5 '420.  Envelopes  with  contact  everywhere  of  high  order. 

"VVe  have  so  far  considered  the  behaviour  of  the  envelope  at  isolated 
exceptional  points.  It  may  happen  however  that  every  point  is  ex- 

ceptional, so  that  ./=  0  for  all  values  of  a.  By  definition,  no  arc  of  the 

envelope  can  coincide  with  any  member  of  the  family,  and  therefore  a' 
can  only  vanish  at  isolated  points.  We  have  as  usual,  differentiating 
along  the  envelope, 

/ax"  + //ay"  +  a'/aa"  =  0, 

so  that  J=Ofar  all  values  of  a  if  and  only  if  fad'  =  Ofor  all  values  of  a. 
In  general /=  0  and/aa"  =  0  will  determine  (by  the  implicit  function 

theorem)  a  parametric  representation  of  the  envelope,  x  =  x  (a),  y=y{a)i 

possessing  differential  coefficients  near  any  value  of  a  except  those  iso- 
lated values  at  which 

(5-421)  ^l  =  |/.'      /aa/'i  =0. 
I  Jy      J<^<*-y 

When  /i  +  O,  the  point  is  an  ordinary  point  on  the  envelope  unless 

The  conditions  for  contact  of  order  n  between  the  envelope  and  the 

curve  (a)  are,  by  4*212, 

(5-4»2)  [?litti]___.0,(..l,2,....). 

where 

^{t,a)=f{x{tly{t\a). 

We  observe  that  the  equations 

(5-424)  ^{t,t)  =  0,     ̂ J(t,t)  =  0,     <^aa"(t,t)  =  0 

are  satisfied  for  all  values  of  t,  where  <^«'  (t,  t)  denotes 

[/a'(^(0,2/(0,  «)]a=^ 

Making  use  of  the  identities  5-424  and  the  similar  identities  obtained 
by  differentiation,  we  verify  that  5 '422  and  5-423  are  satisfied  for  n  =  2. 
The  envelope  therefore  has  in  general  second  order  contact  with  all 

members  of  the  family.  At  isolated  points  at  which  J^  =  0,  faaa" 4=  0, 
we  can  show  as  in  the  last  section  that  a'  =  0  and  the  envelope  has  in 
general  third  order  contact  with  the  curve  (a).  In  this  case  the  contact 
is  only  one  order  higher  than  usual. 
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Conversely,  if  the  contact  is  in  general  second  order  with  all  mem- 

bers of  the  family,  then  J=0  and/aa"  =  0  for  all  values  of  a,  for  other- 
wise contact  is  in  general  of  the  first  order  only.  It  therefore  follows 

that  the  necessary  and  sufficient  conditions  that  the  envelope  should  in 
general  have  contact  of  the  second  order  with  all  members  of  the  family 
are  that 

fJ'  =  0 for  all  values  of  a,  and 

/aa^  +  O 
except  for  isolated  values  of  a. 

The  same  arguments  can  be  extended  step  by  step  to  prove  that  the 
necessary  and  sufficient  conditions  that  the  envelope  should  in  general 
have  contact  of  order  n  with  all  members  of  the  family  are  that 

(5425;  ^^,--3   — -0 

for  all  values  of  a,  and 

(5-426)  ^-^.  +  0 

except  for  isolated  values  of  a. 

It  should  be  observed  that  these  conditions  5*425  and  5*426  bear  no 
obvious  relation  whatever  to  the  necessary  and  sufficient  conditions  for 
contact  of  order  n  at  an  isolated  point  of  an  envelope  for  which  contact 

is  in  general  of  order  n  -  r,  where  r  ̂   1*. 
In  accordance  with  Theorem  4*22,  the  members  of  the  family  in 

general  cross  the  envelope  at  their  points  of  contact  when  n,  the  order 
of  the  contact,  is  even,  and  do  not  cross  the  envelope  when  n  is  odd. 
It  can  also  be  shown  that  in  a  family  for  which  n  is  in  general  odd, 
neighbouring  curves  must  intersect,  while  in  a  family  for  which  n  is  in 
general  even  neighbouring  curves  do  not  intersect!.  To  prove  these 

assertions  an  extension  of  the  analysis  of  §  5*30  is  required  to  the  more 
complicated  cases  in  which  J  =  0.  We  shall  content  ourselves  here  with 
proving  that,  when  n  =  2,  neighbouring  curves  do  not  intersect.  In  this 

case  we  have  J=  0,  /aa"  =  0  everywhere  and  in  general /«,«'"  =t=  0. 
The  proof  of  §  5*30  that,  when  n=l,  neighbouring  curves  must  inter- 
sect depends  essentially  on  the  fact  that,  if  (w,  y)  is  any  given  point  on 

*  It  is  stated  by  Goursat  (Vol.  i,  p.  549)  in  an  example,  that  if  5-425  and  5-426 
are  satisfied  for  an  isolated  value  a,  they  are  the  conditions  for  a  contact  of  order  n 

between  the  envelope  and  the  curve  (a).    This  is  incorrect. 
+  This  is  geometrically  obvious,  or  almost  so,  as  can  be  seen  by  drawing  a  figure. 
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the  curve  (a)  near  a  characteristic  point,  a  value  /xj  of  /a  can  be  found, 
near  0,  such  that 

vanishes  and  changes  sign  when  /a  passes  through  the  value  ̂ i.  The 

failure  of  the  argument  for  ;^  =  2  (and  in  general  when  n  is  even)  is  due 

to  the  fact  that  the  lowest  order  terms  in  /«'  {x,  ̂,  a  +  /x)  (except  for  a 
constant  factor)  form  a  perfect  square,  and  no  value  of  ft  exists  for 

which /a'  changes  sign  near  /x  =  0.  Taking  for  simplicity  the  point  (0,  0) 
as  the  characteristic  point  under  discussion  on  the  curve  (a),  it  is  easily 

verified  that  the  lowest  order  terms  in  the  expansion  of  /«'  {x,  y^o--\-  /*), 
near  (0,  0)  and  near  /x  =  0,  are  second  order  terms  in  x  and  ̂ ,  which 
can  be  put  in  the  form 

where  y  and  y"  refer  to  the  curve  (a).  But  both  y  and  y"  in  this  case 
have  the  same  values  for  the  envelope  at  (0,  0) ;  also  at  all  points  of  the 

envelope  /«'  =/aa"  =  0.  By  differentiating  these  equations  along  the 
envelope  we  obtain  finally 

(fa  J"  +  2y/aV"  +  yVa,y'"  +  yVay")o  =  <'  (/-a'")o, 
\J      aax'^yj      aay)o  —  ~^0   \,J      aaaJOi 

where  a^'  =  (da/dx)oi  taken  along  the  envelope  ;  in  general  ao'  is  not  zero. The  second  order  terms  therefore  reduce  to 

^(/aaa'")o(^ao'-/^)'. 
It  follows  that,  for  any  given  values  of  x  and  y  on  the  curve  (a)  near 
(0,  0),  fa  cannot  change  sign  for  any  value  fi  such  that  |  /ot  |  <^,  where 

^  is  a  constant  independent  of  x  and  y.   For  such  values  of /x,  /  fadfi 

Jo 

can  never  vanish.    No  value  therefore  of  Sa  can  be  found  for  which 

f(x,  y,a  +  So)  =  0,  while  8a  tends  to  zero  as  (x,  y)  tends  to  a  characteristic 
point  on  (a).  Therefore  no  characteristic  point  is  the  limit  of  points  of 
intersection  of  neighbouring  curves.  If  such  curves  intersect  at  all 

they  can  only  do  so  near  a  singular  point.  These  results  may  be  sum- 
marized thus : 

Theorem  5'427.  Under  the  conditions  5*425  and  5*426,  the  contact 
between  the  curve  and  its  envelope  is  of  order  w,  except  at  isolated  points 
at  which  the  order  may  he  higher.  Neighbouring  curves  (a)  in  general 
intersect  and  do  not  cross  the  envelope  when  n  is  odd^  and  do  not  intersect 
hut  cross  the  envelope  when  n  is  even. 
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§  5-50.  The  envelope  of  a  system  of  circles.  We  will  now  give  an 
example  of  a  family  for  which  neighbouring  curves  do  not  intersect,  but  which 

still  possesses  an  envelope.  Such  a  family  is  formed  by  the  circles  of  curvature 

of  any  plane  curve.  For  since  the  plane  curve  touches  each  circle  at  an  ordinary 

point,  it  is  the  envelope  (or  part  of  it).  Moreover,  on  referring  to  §  3-70,  we 
see  that  the  difference  between  the  radii  of  curvature  at  neighbouring  points 

is  equal  to  the  arc  of  the  evolute  between  the  two  centres  of  curvature,  and  is 

therefore  in  general  greater  than  the  distance  between  these  centres.  One 

circle  therefore  completely  encloses  the  other,  and  so  there  are  no  points  of 
intersection. 

It  follows  from  §  5*420  that  contact  between  members  of  the  family  and  the 
envelope  must  in  such  a  case  be  of  even  order,  and  therefore  the  typical  case 

of  an  envelope  not  generated  by  limits  of  x>oints  of  intersection  is  that  in  which 

this  contact  is  in  general  of  the  second  order.  A  family  of  circles  is  the 

simplest  possible  family  of  the  kind,  for  the  three  conditions  of  second  order 

contact  require  just  three  arbitrary  functions  of  a  in  the  equation  of  the  curves 
of  the  family. 

It  is  of  interest  to  study  a  family  of  circles  directly.  We  shall,  among 

others,  arrive  at  the  foregoing  results,  and  also  find  that  a  given  curve  is  the 

complete  envelope  of  its  circles  of  curvature,  a  point  at  present  in  doubt.  Let 

the  system  be 

(5-501)  (a;-a)2  +  (y-6)2-./?2=0 

where  a,  b,  R  are  functions  of  a.  There  are  no  singular  points  on  any  member. 

The  characteristic  points  are  the  intersections  of  this  circle  with  the  straight 
line 

(5-502)  {x  -a)a'  +  Q/-b)b'  +  RR = 0. 
Denoting  the  locus  of  the  centres  of  the  circles  by  C,  we  see  that  this  line  is 

perpendicular  to  the  tangent  to  C  at  a,  i.e.  the  point  a  (a),  b  (a),  and  distant 

from  this  point  by 

RR'l{a'^  +  b'^)^* 

This  is  greater  than,  equal  to,  or  less  than  R  according  as  R'^  is  greater  than, 

equal  to,  or  less  than  a"^-\-b'^,  and  there  are  no,  one,  or  two  characteristic 
points  respectively.  In  the  first  case  there  is  no  envelope  for  that  part  of  the 

family,  and,  if  R"^  >  a'^  +  b'^  for  all  values  of  a,  no  envelope  at  all.  Next  suppose 

that  for  all  values  of  a,  R'^<a'^  +  b'^.  There  is  then  an  envelope,  composed 
in  general  of  two  branches ;  an  obvious  example  is  provided  by  the  case 

of  a  moving  circle  of  constant  radius  R'  =  0.  Finally  suppose  that  for  all  values 
of  a 

(5-51)  R'^  =  a"^  +  b'\ 

*  Supposing  a'  and  h'  not  both  zero.  If  they  both  are,  and  iv'4=0,  there  is  no 

characteristic  point,  but  if  also  R'  =  0,  this  particular  circle  is  entirely  composed  of, 
characteristic  points.  This  can  only  happen  for  isolated  values  of  a,  which  may  be 
neglected. 
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There  is  then  an  envelope  composed  of  the  points  of  contact  of  5*501  and  5 "502. 
It  follows  that  {x-a)  a' +  (i/  —  b)b' +  BR'  =  0  is  the  tangent  to  the  envelope  at 
the  characteristic  point  of  a,  and  therefore  that  normals  to  the  envelope  are 
tangents  to  C.  In  other  words  C  is  the  evolute  of  the  envelope,  and  therefore 
the  circles  are  the  circles  of  curvature  of  their  envelope.  It  is  easily  seen  that 

the  condition  5*51  is  also  necessary  for  this  relationship.  Any  plane  curve  is 
therefore  the  complete  envelope  of  its  circles  of  curvature. 

§  5*60.    Other  rules  for  envelopes.    (1)  The  equation  of  the 
family  may  be  given  in  some  other  form  such  as 

(5-601)  A^,l/,o^,P)  =  0 
with  the  condition 

(5-602)  «/>  (a,  /3)  =  0. 
We  apply  the  usual  rule,  regarding  ̂   as  a  function  of  a,  and  must 
therefore  have 

(5-603)  '^'^'^^^^'='^' But  we  also  have 

(5-604)  «^/  +  ̂<^^'  =  0 

and  we  have  therefore  to  eliminate  a,  /3,  -j-  between  the  equations 

(5*601 — 5-604),  or,  what  is  the  same  thing,  a  and  ̂   between 

(5-61)  /=0,    ̂   =  0.    1^  =  0. 
All  the  former  exceptional  cases  must  be  taken  account  of,  with  the 

addition  of  singularities  of  <f>  (a,  /3)  =  0,  but  these,  being  isolated  points, 
are  not  of  importance. 

(2)  The  curves  may  be  given  in  the  parametric  form 

(5-611)  a;  =  ct>,(t,a\    t/ =  <t>o(t,  a). 

We  can  apply  the  usual  rule,  regarding  #  as  a  function  of  ̂   and  a.  We 
have  therefore 

corresponding  to  /«'  =  0,  and  also  the  identical  relation 

which  lead  together  to 
dt   da       da         ' 



74  THE  THEORY  OF  ENVELOPES 

The  envelope  is  therefore  to  be  looked  for,  with  the  usual  precautions, 
among  the  results  of  eliminating  t  and  a  from 

(5-62)  x^<f>,{t,a),    y  =  Ut.-\     ̂ -^^  =  ̂' 
EXAMPLES  IV 

(1)  The  envelope  of  the  straight  line 

(1)  X  COSa  +  1/ sin  a=f  (a). 

The  characteristic  point  lies  on  the  straight  line 

(2)  —  ̂ sina-|-ycosa=/'(a). 
Show  that  (i)  the  line  (2)  is  normal  to  the  envelope,  (ii)  the  envelope  of  the 
line  (2)  is  the  evolute  of  that  of  the  line  (1),  and  (iii)  that  the  curvature  and 
arc  of  the  envelope  of  the  line  (1)  are  given  by 

p  =  clskla=^±{f{a)+ria)}. 

(2)  Families  of  circles^  suck  that  R'^  =  a'^  +  b'^  (§5"50). 
The  family  is 

Calculate  dR  and  {(5a)2+(86)2}2  corresponding  to  a  positive  change  of  da  in  a, 
as  far  as  terms  in  (Sa)^,  and  thus  verify  that  neighbouring  circles  do  not  intersect. 

[We  find  dR=A8a+B{8ay+  C^  {daf+0  {8a)\ 

{(8a)2  +  (86)2}^  =  A8a  +  B  {8af  +  C^  {baf  +  0  {ba)\ 

where  A  =  {a'^^h"^)\    B={a'a"+b'b")/2A, 

Ci=  {{2a' a'"  +  2a"2)  A^  -  (2a'a")2}/6J3, 

where  2  denotes  summation  over  the  functions  a  and  b ;  so  that 

which  is  positive  when  8a  is  small.] 

(3)  Curvature  of  the  envelope.    Let  y\  y"  ...  denote  the  derivatives  of  y  along 
the  curve  (a),  and  y/,  y/' ...  the  derivatives  along  the  envelope.    Then 

y'=ye  =  -fxlfv\ 

and  the  diflference  of  the  curvatures  is  given  by 

i  _  1  =  Ve'-y"  ̂ 
Pe     p     (i+y2)f' 

Differentiating  /=0  twice  along  the  curve  (a)  we  obtain 

(1)  fJ'+^y'fxy"-^y'Vyu"+y"fy'=o> 
and  differentiating  along  the  envelope 

(2)    fj'  +  2y'f^"  +y'-'fyy"  +ye"fy'  +  2a' f J'  +  2a' y' fay"  +  a'Vaa"  +  a"  fa'  =  0. 
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Subtracting  (1)  from  (2)  and  using  the  facts  that  for  the  envelope 

fa  =  0,     U'  +  y'fay"  "f  «'/,«"  =  0, we  have 

1         l_(/.7a/-/;/a/)^_  J' 

P^        P  faa"if."+fy¥         faa'ifj'+fy"f 
We  thus  arrive  as  before  at  the  fact  that  the  curvatures  cannot  be  equal  unless 

^"=0.  Equality  of  curvature  at  a  point  of  contact  is  equivalent  to  second order  contact. 

(4)  Verify  that,  for  the  family  of  circles 

the  condition  J=0  reduces  to  R'^=a'^  +  b"^. 

(5)  Show  that  the  curvature  of  the  curve  whose  tangential  equation  is 
'p{l,m)  =  0  is 

at  its  point  of  contact  with  lx-\-my=\. 
[The  curve  is  the  envelope  of  lx-\-my  =  \  under  the  condition  (f>{ljm)=0. 

Take  I  as  parameter  and  let  mi ,  7712,  ...  be  the  derivatives  of  m  with  respect  to 
I.    We  have 

The  coordinates  of  the  characteristic  point  satisfy 

lx-\-my  =  \^    x-\-miy=0. 

Apply  the  general  formula  of  Example  3,  remembering  that  l/p  =  0.] 

(6)  If  ̂ ,  5,  C  are  functions  of  x  and  y,  show  that  in  general  the  envelope 

of  Ja2+2^a  +  (7=0  is  B^  =  AC.    Examine  the  exceptional  cases.    [See  §  5-20.] 

(7)  The  envelope  of  the  family 

is  to  be  found  in  the  result  of  eliminating  a,  ̂,  y  from  these  equations  and 

S  (a,  A  7) 

(8)  The  first  positive  pedal  of  a  plane  curve  is  the  envelope  of  circles 
described  on  the  radii  vectores  as  diameters.  The  first  negative  pedal  is  the 
envelope  of  a  straight  line  drawn  through  any  point  of  the  curve  and  at  right 
angles  to  the  radius  vector  to  the  point.  [Lamb,  Infinitesimal  Calculus, 
2nd  ed.,  p.  382.] 

(9)  Caustics.  The  caustic  of  a  curve  C  with  respect  to  a  luminous  point  A 
is  defined  as  the  envelope  of  the  rays  from  A  after  reflection  by  C.  Prove  that 

the  caustic  is  the  e volute  of  the  pedal,  with  respect  to  J,  of  the  curve  C", 
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similar  to  (7,  which  is  obtained  by  producing  each  radius  vector,  from  A  to  the 
curve  C  a  distance  equal  to  itself.    Deduce  that 

1      1 

+  -  = 
I      r      R  cos  ̂  

r  being  the  length  of  the  incident  ray  AP^l  the  length  of  the  reflected  ray 
from  P  to  the  caustic,  R  the  radius  of  curvature  of  C  at  P,  and  i  the  angle  of 
incidence. 

In  particular,  if  the  rays  of  light  are  parallel 

l  =  ̂ Rcos>i^ 

and  the  normal  to  the  caustic  passes  through  the  middle  point  of  the  radius  of 
curvature  of  C. 

[The  normal  to  the  pedal  of  a  curve  passes  through  the  middle  point  of  the 

radius  vector  (Ex.  8).  Hence  the  reflected  ray  is  normal  to  the  pedal  of  C  with 

respect  to  A .  Use  the  relation  between  the  curvatures  of  a  curve  and  its  pedal 

(d.l.V.R,  Vol.  I,  p.  323,  Ex.  8).] 

§  5  70.  Similar  problems  in  three  dimensions.  Many  three- 

dimensional  problems  on  envelopes  are  direct  extensions  of  the  two- 
dimensional  ones  already  treated.  We  shall  consider  some  of  the 
simplest. 

( 1 )   Envelojye  of  a  family  of  surfaces 

J  {^,  y,  z,  a)  =  0. 
We  define  a  characteristic  point  exactly  in  §  5*10  and  show  that  it  is  an 
ordinary  point  of  the  surface  satisfying 

(5-71)  /=0,    /a'-O. 
For  certain  values  of  a,  the  whole  surface  may  be  composed  of 

characteristic  points  *,  but  in  general  there  will  be  an  isolated  curve  of 
characteristic  points  lying  on  each  surface/^  0.  Such  a  curve  is  called 
the  characteristic  of  the  surface  f^  0.  We  then  define  the  envelope 
of  the  family  as  the  surface  generated  by  the  characteristics.  Following 

the  lines  of  §§  5*10 — 5*60,  we  then  prove  that  the  envelope  is  obtained 
by  eliminating  a  from/=  0,  fa  =  0,  taking  care  to  discard  the  stationary 
surfaces,  and  surfaces  composed  of  singular  lines  of  the  surfaces  (a); 
that  when  neighbouring  surfaces  intersect,  the  limits  of  the  curves  of 
intersection  are,  in  general,  characteristics,  but  that  envelopes  may  exist 
when  neighbouring  surfaces  do  not  intersect ;  that  a  surface  (a)  touches 
the  envelope  at  every  point  of  its  characteristic;  and  that  a  surface 
consisting  of  curves  of  contact  with  members  of  the  family  is  in  general 

*  These  may  be  called  '■'stationary  sur/aces,^^  if  a  name  is  required. 
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the  envelope  (or  part  of  it).  An  alternative  enunciation  of  the  last 

assertion  is  that  a  surface  which,  at  every  point,  touches  one  of  the 

surfaces  of  the  family  is,  in  general,  the  envelope  (or  part  of  it). 

In  particular,  a  surface  whose  tangent  plane  depends  on  one  para- 
meter, is  the  envelope  of  its  tangent  plane.  Such  a  surface  is,  of  course, 

a  developable  surface. 

(2)  Envelope  of  a  f am  ily  of  surfaces 

f(^,y,z,a,^)^0. 
We  define  a  characteristic  point  as  an  ordinary  point  of  the  surface 
whose  distance  from  the  surface 

f(ix,y,z,a  +  Sa,/3  +  S^)^0 

is  small  compared  to  |  8a  |  +  1 8y8 1 .  Such  points  are  ordinary  points 
satisfying 

(5-72)  f=0,    A'  =  0,    //  =  0, 
and  are,  in  general,  isolated,  but  whole  surfaces  or  whole  lines  on 
particular  surfaces  may  be  composed  of  characteristic  points.  The  surface 
composed  of  all  isolated  characteristic  points  or  lines  of  characteristic 
points  is  called  the  envelope.  As  before,  the  envelope  may  or  may  not 
be  generated  by  the  limits  of  points  of  intersection  of  the  surfaces 

/(^,3/,  2^,  a, /3)  =  0, 

f(a',t/,Z,  a  +  8a,^)  =  0, 

/(^,3^,^,a,^+¥)  =  0, 
and  touches  every  surface  of  the  family.  Conversely,  a  surface  touching 
every  member  of  the  family  is,  in  general,  the  envelope  (or  part  of  it). 

In  particular,  a  surface  whose  tangent  plane  depends  on  two  para- 
meters (i.e.  any  surface)  is  the  envelope  of  its  tangent  planes. 

(3)  Envelope  of  the  family  of  twisted  curves 

(5-73)  f(x,y,z,a)  =  0,    g{x,y,z,a)  =  Q. 
We  define  a  characteristic  point  of  the  curve  (a)  as  an  ordinary  point 
whose  distance  from  the  curve  (a  +  8a)  is  of  order  higher  than  the  first 
in  8a.    We  find,  by  the  former  method,  that  such  a  point  must  satisfy 

(5-731)  /a'  =  0,    ga'  =  0. 

In  general,  the  equations  5 '73  and  5'731  are  incompatible  (except 
perhaps  for  a  number  of  isolated  values  of  a),  and  there  are  no 

characteristic  points.    But  if,  as  may  happen,  the  equations  5"73  and 
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5 '731  effectively  reduce  to  three,  and  so  can  be  satisfied  by  the  con- 
tinuous functions  of  a 

the  twisted  curve,  of  which  the  above  functions  give  the  parametric 
representation,  is  called  the  envelope  of  the  family.  We  can  then  prove, 
as  before,  that  the  envelope,  if  it  exists,  touches  all  the  curves  at  their 
characteristic  points,  and,  conversely,  that  if  a  curve  exists  which  at 
every  point  touches  one  member  of  the  family,  then  this  curve  is,  in 
general,  the  envelope  (or  part  of  it). 

There  is  one  important  particular  case  in  which  the  envelope  in 
general  exists,  and  that  is  the  case  of  the  characteristics  of  a  family  of 
surfaces  depending  on  one  parameter.  The  characteristics  satisfy  the 

equations 
/=o,  f:  =  o, 

and  therefore  the  four  equations  5*73  and  5*731  reduce  in  this  case  to 
three 

which  in  general  will  just  determine  the  isolated  characteristic  points 
whose  locus  is  the  envelope.  This  curve  which  touches  all  the  character- 

istics of  the  family,  lies  on  the  envelope  and  is  called  its  edge  of  re- 

gression*. For  proofs  of  many  of  these  assertions  and  for  further  developments 
in  the  region  of  Solid  Geometry  the  reader  is  referred  to  de  la  Valine 
Poussin,  Picard,  and  the  paper  (already  quoted)  by  Bromwich  and 
Hudson. 

EXAMPLES  V  \ 

(1)  The  edge  of  regression  has,  in  general,  second  order  contact  with  any 

surface  of  the  family  on  the  characteristic,  I 

[Use  Theorem  4-61.]  ; 

(2)  Discuss  the  problem   of  the  envelope  of  a   moving  sphere,  whose 

centre  lies  on  a  twisted  curve,  (i)  when  the  radius  is  constant  {une  surface  ■• 
canal),  (ii)  when  the  radius  varies. 

[Extend  §  5*50  from  circles  to  spheres.]  i 
i 

*  Fr.  Varete  de  rehroussement.   Plane  sections  of  the  envelope  have  in  general  a  1 
cusp  {point  de  rehroussement)  where  the  plane  cuts  this  curve.     See  Picard,  vol.  i,  i 
p.  322.  I 
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(3)  The  wave  surface.   The  envelope  of  the  plane 

where  02+^24,^2=1 

a2  fl2  y2 

is  the  surface 

^. +^ + ^.=0,  (,.^=,.^+/+.^). 

(4)  The  direction   cosines  of  the  normal   to  the  surface  obtained   by- 
eliminating  a  between /(^,  y,  z,  a)=0  and  g  (x,  y,  z,a)  =  0  are  given  by 

I .  ̂   .  ,,Jifi_9)  .HM  .'^IM a  {x,  a)  '  d{y,a)'  d  (0,  a)  * 
Obtain  the  corresponding  result  for  a  surface  obtained  by  elimination  of  two 

parameters  between  three  equations.  Apply  these  results  to  the  proof  of  the 
contact  of  a  surface  with  an  envelope. 

(5)  The  envelope  of 

f  {x,y,z,  a,  ̂,y)  =  0, 

where  0(a,/5,y)  =  O,    ./.(a, /3,  y)  =  0, 

is  given  by 

J     ") 

^-^'     ̂ --      0(a,^,y) 

(6)   The  envelope  of 

/(^,y,0,a,^,-y)  =  O, 
where 

0(a,/3,y)  =  O, 
is  given  by 

/=0,     0  =  0,     /a7<^a'=/^70^'=/y7<^v'- 

(7)  Given  a  surface  S,  suppose  that  with  each  point  7n  of  S  as  centre  a 

sphere  2  is  drawn  with  variable  radius  R.  Prove  that  this  sphere  2  in  general 

touches  its  envelope  in  two  points  M  and  M'  such  that  MM'  is  normal  to  the 

tangent  plane  at  m  to  aS'. 
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CHAPTER  VI 

SINGULAR  POINTS  OF  PLANE  CURVES* 

§  6*10.    Exceptional  cases  in  general.    Singular  points.    In 
the  course  of  the  preceding  chapters  we  have  encountered  cases  of  ex- 

ception in  which,  when  some  particular  relation  is  exactly  satisfied,  the 
general  treatment  usually  applicable  breaks  down.  These  cases  of  ex- 

ception correspond  to  exceptional  points  on  the  curve,  usually  such 
that  there  are  only  a  finite  number  in  any  finite  region,  at  which  the 
curve  has  some  peculiar  property  such  as  a  stationary  tangent,  a  point 
of  inflexion,  exceptionally  high  order  contact  with  its  circle  of  curvature, 
or  its  envelope,  etc.  All  such  points  at  which  the  curve  possesses  peculiar 
properties  may  be  considered  to  be  singular  points  on  the  curve,  but 
it  is  usual  to  reserve  this  name  for  a  particular  class  of  exceptional 

points — the  most  important  class — which  consists  of  the  points  at  which 

when  the  curve  is /(a-,  y)  =  0,  and 

when  the  curve  is  a:  =  cf>y  (t),  y  =  ̂.^  (t).  The  former  case  is  more  general, 
and  we  shall  be  mainly  concerned  with  it.  For  the  neighbourhood  of 

such  points  the  general  existence  theorem  1*51  breaks  down,  and 
further  investigation  is  needed. 

We  shall  again  in  this  chapter,  as  in  Chapters  IV  and  V,  tacitly 
assume  the  existence  and  continuity,  in  the  neighbourhood  of  the 

singular  point  under  discussion,  of  all  the  partial  differential  coefficients 

oif(x,  y),  or  differential  coefficients  of  <^i  (t),  cf>^  (t),  that  are  mentioned. 

§6*20.  Form  of/ (^,  3/)  =  0  in  the  neighbourhood  of  a  singular 
point.  Without  loss  of  generality  we  may  suppose  that  the  singular 
point  is  the  origin,  so  that 

/(o,o)=/;(o,o):=/;(o,o)  =  o. 

It  follows  from  Taylor's  Theorem  that  in  the  neighbourhood  of  the 
origin /(^,  y)  can  be  put  in  the  form 

(6-21)  /(^,3/)  =  <^2  +  <^3+.'.  +  <3!>n  +  ̂n. 

*  This  chapter  follows  d.l.V.P.,  Vol.  ii,  Chap.  ix. 

i 
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111  this  equation 

=  anx''  +  6«ir"->  +  . . .  +  kny'\ 

the  latter  form  being  used  for  the  sake  of  shortness,  and  Rn  is  the 

remainder  after  n  terms.  The  most  useful  form  of  Rn  for  our  purposes 

is  the  exact  form* 

(6-211)  Rn  =  ̂      F(-''\tx){l^tfdt, 
U'.    Jo 

where 

F{x)  =  F  {x,  u)  =f{x,  ux)    (it  =  ylx), 

or  the  corresponding  form 

(6-212)  Rn  =  L.  I  (-(«+!)  (^tij)  (1  -  tydt, 
where 

G{y)  =  G{y,^)=f(:^j,y)  (^=^/3/). 

Provided  that,  as  is  generally  the  case,  <^2  does  not  vanish  identically, 

the  singular  point  is  said  to  be  of  the  second  order.  When  <^2,  <^3  •  •  •  ̂n-i 

are  identically  zero,  but  <^a  is  not,  the  singular  point  is  said  to  be  of 
order  n. 

The  fundamental  form  of  the  curve  will  not  be  altered  by  any  trans- 
formation of  the  axes  of  the  type 

X  =  ax  +  by,     y  =  cx  +  dy  ; 

and  the  properties  of  the  transformed  function/'  {x\  y')  will  be  the  same 
as  those  of  f{x,  y)  near  (0,  0).  We  may  therefore  at  any  stage  make, 

without  loss  of  generality,  any  such  transformation  that  simplifies  the 
discussion. 

Certain  properties  of  the  transformed  functions  F(x,u),  G(y,v) 

should  be  noted.  The  function  F(x,  u)  has  as  many  orders  of  partial 

differential  coefficients  as  f{x,  y)  near  ̂   =  0  and  any  finite  value  of  w, 

for  all  such  points  belong  to  the  neighbourhood  oi  x  =  0,  y  =  0.  A  similar 

statement  holds  of  G  (y,  v)  near  y  =  0,  and  any  finite  value  of  v.  Any 

point  near  ̂   =^  0,  ̂  =  0,  corresponds  to  a  finite  value  of  one  at  least  of 
u  or  V. 

If  we  suppose  for  example  that  u  is  finite,  and  apply  6-211,  we  see 
that  in  such  a  neighbourhood 

(6-22)  Rn=0(x''+'). 

*  d.l.V.P.,  loc.  cit.,  and  Vol.  i,  p.  432. 
F.  (> 
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§  6-30.  Nature  of  the  curves  defined  by /(^,  y)  =  0.  A  discussion 
of  the  following  simple  case  will  illustrate  the  nature  of  the  curves 

defined  hy/(.r,  y)  =  0.    Let 

/(^.  y)^{y-  «^)  {y  -  P^)  =  o, 
where  a  and  /8  are  real  constants.  Then  the  equation  /(^,  ̂ )  =  0  defines 
the  two  straight  lines 

y  =  aa',     y  =  Px. 

These  are  two  independent  solutions  oif(w,  y)  =  0,  which  are  continuous 
in  the  neighbourhood  of  the  singular  point  (0,  0).  These  solutions, 

however,  are  not  the  only  functions  of  the  type  y  =  <f>{x)  which  satisfy 

f{x,y)  =  0. The  function  (or  curve) 

y-ax{x  rational),    y  =  ̂ x{x  irrational) 

also  satisfies /(;r,  y)  =  0.  This  is  a  difficulty  that  does  not  occur  in  the 

non-exceptional  case  (Theorem  1*51).  It  is  essentially  due  to  the  fact 
that  in  this  case  there  are  tivo  independent  solutions  near  (0,  0).  We 
see  therefore  that  it  is  necessary  to  make  the  a  priori  restriction  that 

we  are  concerned  only  with  continuous  solutions  of  f(x,  y)  =  0,  i.e.  such 
curves  as  can  be  put  in  one  of  the  forms 

y  =  4>{x\     x  =  ff>{y), 

where  4>  (x)  or  <^  (y)  is  a  continuous  function  m  tk£  neighbourhood  of 

x^Q,  or  y  =  0,  except  perhaps  at  x  ̂ 0,  or  y  =  0  itself.  There  may  be 
an  infinity  of  other  solutions  of  /(x,  y)  =  0,  which  are  of  no  present 
interest. 

It  is  not  necessary  to  assume  a  priori  that,  for  example,  <l>  (x)  is 

continuous  at  a:  =  0,  i.e.  <f>  (x) —>  0  a^s  x —^  0.  Since  we  are  considering 
solutions  off(x,  y)  =  Om  the  neighbourhood  of  (0,  0)  it  is  only  necessary 
a  priwi  that  zero  should  lie  between  the  limits  of  indetermination  of 

<^  (x)  as  ̂   ̂   0.  It  is,  however,  easily  proved,  by  establishing  contradic- 

tions in  the  alternative  case"^,  that  as  x—>0,  <{> (x)  —> 0. 
We  therefore  have  to  consider  solutions  of  /\x,  y)  =  0,  of  the  type 

y  =  cf>(x)  or  x  =  <t> (y),  for  which  <^  — > 0  as  x—^0,  or  y—^0,  and  <^  is 
continuous  near  x  =  0  or  y  =  0.  Such  a  solution  we  may  call  a  con- 

tinuous solution,  or  from  the  geometrical  point  of  view,  a  branch  of 
the  curve. 

*    Hardy,  P.M.,  p.  192. 
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§  6-310.  The  fundamental  property  of  branches  through  a 
singular  point.  The  necessary  discussion  is  simplified  by  establishing 
in  the  first  place  a  certain  general  property  of  any  branch  {i.e.  continuous 

solution)  of /(^,  y)  =  0,  without  reference  to  questions  of  existence. 
Questions  of  existence  are  treated  later  on. 

Theorem  6*31 1.  Any  branch  must  touch  at  (0,  0)  one  of  the  straight 
lines  defined  by 

<t>n  =  0, 

where  n  is  the  m'der  of  the  lowest  order  partial  differential  coefficient  of 
fQc.y)  ivhich  does  not  vanish  near  (0,  0). 

The  straight  lines  defined  by  <^„  =  0  may  all  be  put  in  one  or  other 
of  the  forms 

y  =  \x, 
where  A.  is  a  root  of 

(6-312)  ^„A«  +i„X"-^  +  ...  +  a„  =  0, 

or  X  =  X'y, 
where  A.'  is  a  root  of 

(6-313)  a„V"  +  ̂>„  V»-i  +  ...+kn  =  0. 

If  y  is  any  branch  of  /(^,  y)  =  0,  it  is  required  to  show  that  either 

(6-314)  3/  ̂   X^, 

where  X  is  a  root  of  6-312,  or 

(6-315)  ^  ̂   X'y, 

where  A.'  is  a  root  of  6-313.  In  the  case  of  X  =  0  or  X'  =  0  the  corresponding 
relation  must  be  replaced  hy  y  =  o(a:)  or  ic  =  o (y). 

The  theorem  may  be  proved  by  establishing  contradictions  in  every 

alternative  case,  for  if  neither  6-314  nor  6*315  is  satisfied,  then  either 

(i)  yl^^H-  09^  ̂ ln-^H-, 
where  /x  is  some  finite  number,  zero  included,  which  is  not  a  root  of 

either  6-312  or  6313, 

or  (ii)    there  exist  a  constant  /a,  not  a  root  of  6*312  or  6-313,  and  an 
infinite  sequence  of  values  of  ic,  which  tend  to  0,  such  that  for  these  values 

y/x  =  fi. 
In  either  case  it  may  be  proved  that*  <^„  ̂^  Aa;^  (A  4=  0)  and  at  the 

same  time*  Rn  =  0(x'^^'^\  and  since  </)„  +  ̂ „  =  0  these  relations  are 
contradictory. 

*  It  may  of  course  be  necessary  to  replace  xhy  y  in  both  these  relations. 
6—2 
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§  6  40.    Singular  points  of  the  second  order.    Existence  of  i 
branches.    We  now  proceed  to  consider  questions  of  existence,  starting  ; 
with  the  simplest  case  of  a  singular  point  of  the  second  order.    This  , 
case  is  governed  by  the  homogeneous  quadratic  form  ^ 

Let  I 

(6-41)                                   A  =  bJ'-Aa^c^.  \ 

If  A  <  0,  the  straight  Hues  represented  by  <^2  =  0,  which  provide  all  i 

the  possible  tangents  to  the  curve  at  the  origin,  are  imaginary ;  if  A  >  0,  ' 
they  are  real  and  distinct ;  if  A  =  0,  <^2  is  a  perfect  square  and  <f>2  =  0  \ 
represents  only  one  straight  line.  \ 

The  nature  of  the  singularity  is  described  by  the  following  theorem. 

Theorem  6 '42.   Second  order  singularities.  i 

(1)  If  A  <0,  the  singularity  is  an  isolated  point.  There  is  no  branch  ' 
(real)  of  the  curve  f{x^  y)~^  through  the  singularity.  ^^ 

(2)  If  A>Oy  the  singularity  is  a  double  point  with  distinct  ; 

tangents*.  The  curve  has  two  branches  through  the  singularity,  one  \ 
touching  each  of  the  distinct  lines  defined  by  <j>-2  =  0. 

(3)  If  A-  0,  the  form  of  the  curve  is  still  uncertain  but,  in  general,  ' 
unless  a  particular  condition  is  satisfied,  the  singularity  is  a  cusp  of  ■ 
the  first  species.  The  curvehas  two  branches  which  tend  to  the  singularity  \ 

from  one  side  only,  and  have  as  tJieir  common  tangent  there  the  line  de-  \ 
fined  by  <^2  =  0.     The  branches  lie  on  opposite  sides  of  the  tangent.  i 

(1)  A<0.  This  case  is  covered  by  Theorem  6 '311;  for  since  there  I 
is  no  real  line  which  the  branch  can  touch  there  can  be  no  branch  through  ] 

the  singularity.  ] 

(2)  A  >  0.  In  this  case  there  are  two  distinct  real  roots,  and  we  \ 

may  suppose  (§  6 '20)  that  j 
<t>i^xy;  \ 

the  necessary  axes  may  be  oblique.    Any  branch  must  either  touch  the  \ 

line  2/  =  0,  satisfying  y  =  o  {x),  or  touch  cc^  0,  satisfying  a;-o  (y).  Consider  •. 
the  former  case  and  put  y  =  ux,  so  that  u—^0.    The  equation /(^,  y)  =  0  j 
transforms  into  ] 

x^u  +  a^Fi  {x,  u)  =  0 
I 

(6-43)                      II(x,  u)  =  u  +  xF^  (x,  u)  =  0,  | 
I 

*  Frequently  called  a  node.  l: 
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where  the  function  i^i  possesses  continuous  partial  differential  coefficients 
near  (0,  0).    Moreover 

^(«'«)  =  «'     ©0  =  1' 
and  therefore  the  Existence  Theorem  1'51  may  be  applied.  There 
exists  therefore  a  unique  branch 

such  that  <^i (.r)  — > 0  as  £c—>0.  The  equation  /(^, y)  =  0  has  exactly 
one  branch 

touching  the  line  i/  =  0  at  the  origin.  Similarly  there  is  exactly  one 
branch 

touching  the  line  ̂ r  =  0  at  the  origin.    There  cannot  be  other  branches. 

(3)  A  =  0.    In  this  case  <^2  is  a  perfect  square  and  we  may  suppose 

(§  6-20)  that 

Any  branch  must  touch  y  =  Q  sX  the  origin.    We  therefore  write 
y  =  ux,  where  m  — »  0,  divide  by  a^,  and  obtain 

(6 "44)     H (^,  u)~u^  +  x  (as  +  b^u  +  c^ u^  +  dsU^)  +  a^Fi  (x,  u)  =  0, 
where  Fi(x,  u)  possesses  partial  differential  coefficients  near  (0,  0). 

If  «3  4=0,  the  Existence  Theorem  1*51  applies,  and  establishes  the 
existence  of  a  unique  function  \j/  such  that,  near  (0,  0), 

x=umu)     (v5.(0)  =  a4=0). 

Making  the  substitution  xja  =  f^  it  is  easily  seen  that  the  origin  is 
an  ordinary  double  point  with  distinct  tangents  for  the  (t,  u)  curve. 
There  exist,  therefore,  two  branches  of  the  (?«,  x)  curve  of  the  form 

U  =  {xiaf  g  {{xla)\      u  =  -  {xjaf  g  {-  {xjaf] ; 

and  so  two  branches  of  the  (y,  x)  curve 

(6-45)  y-±^{xl<^fg{±{a;lo)K 

where  ̂   (0)  =  1.  It  will  be  observed  that  y  is  real  for  real  x  when  and 
only  when  xja  >  0,  i.e.  on  one  side  only  of  the  origin.  Further,  y  has 
opposite  signs  on  the  two  branches  near  (0,  0),  and  therefore  the  two 
branches  lie  on  opposite  sides  of  the  common  tangent.  Such  a  point  is 
called  a  cusp  of  the  first  species. 
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§6*460.  Discussion  of  the  doubtful  case.  When  ̂ 3  =  0,  i.e. 
^ffta^  -  0  for  the  particular  axes  chosen,  the  above  discussion  does  not 
apply,  and  the  nature  of  the  singularity  remains  doubtful.  If  we  return 

to  equation  6*44  giving  H  {x,  u),  regard  it  as  an  equation  between  x 
and  u  and  rearrange  the  terms  in  a  new  Taylor's  series  we  obtain 

(6*461 )     {ii^  +  h^ux  +  ̂ 4^^)  +  {a^a?  +  h4,x^u  +  c^xu^)  +  B^  {x^  u)  =  0. 

We  are  concerned  with  branches  through  (0,  0)  and  6*461  shows 
that  (0,  0)  is  a  singular  point  of  the  second  order  on  the  (w,  ̂ )  curve. 
We  therefore  apply  de  novo  the  preceding  discussion. 

Case  (1).  If  the  quadratic  form  u^  +  h-^ux  •¥  a^x^  has  no  real  roots, 
the  origin  is  an  isolated  point  on  the  {u^  x)  curve  and  therefore  also  on 
the  (y,  x)  curve. 

Case  (2).  If  this  quadratic  form  has  two  distinct  real  roots  a  and  y8, 
there  are  two  distinct  branches  of  the  (w,  x)  curve  passing  through  (0,  0) 
and  such  that 

M  f^  cur,     u  <^  Px 

respectively.  There  are  therefore  two  distinct  branches  of  the  {y,  x) 
curve  through  (0,  0)  such  that 

1/  f^  ax^f     y  r^  Po^. 

It  is  easy  to  see  that  if  one  root  (a  say)  is  zero,  the  corresponding 
branch  of  the  {y^  x)  curve  takes  the  form 

yr^a'x^     (^^3). 
It  will  be  observed  that  both  of  these  branches  are  real  on  both  sides 

of  the  origin,  which  may  be  called  in  this  case  a  double  point  with 
coincident  tangents.  The  two  branches  are  distinguished  by  their 
necessarily  different  curvature  at  the  origin. 

Case  (3).  If  the  quadratic  form  is  a  perfect  square  {a  -  a^)^  we 
again  return  to  the  doubtful  case.  If,  however,  as  is  in  general  the  case, 

a5=j=0  in  6*461,  the  (^^,  x)  curve,  after  the  last  section,  has  two  branches 
near  (0, 0)  touching  u  —  ax  =  0  and  such  that 

u-ax'-^±x{Px)^      (/8  +  0). 

It  follows  that  the  (3/,  x)  curve  has  two  branches  near  (0, 0)  such  that 

y  -  ax^  (^  ±x^  ifixy. 

These  two  branches  exist  only  on  one  side  of  (0,  0),  have  (of  course) 

the  common  tangent  3/  =  0,  but  now  lie  on  the  same  side  of  the  tangent. 
Such  a  point  is  called  a  cusp  of  the  second  species.    Such  a  cusp  is 
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an  essentially  more  complicated  singularity  than  a  cusp  of  the  first 
species. 

In  the  exceptional  case,  however,  a^  =  0,  and  the  nature  of  the  curve 
is  still  doubtful,  for  the  origin  is  still  a  double  point  of  the  curve  obtained 
by  transformation  from  the  {u^  x)  curve.  It  is  necessary  to  start  the 
discussion  yet  again  at  the  beginning,  and  to  continue  until  a  decision 
is  reached.  If  the  curve  is  algebraic  f{x,  y)  is  a  poljniomial,  and  the 
process  must  eventually  terminate,  for  each  step  consumes  more  terms. 
If,  however,y  [x,  y)  is  not  a  polynomial,  the  process  may  never  terminate, 
and  the  nature  of  the  singularity  remains  undecided.  In  all  cases  in  which 
the  process  terminates  (whatever  the  stage)  the  resulting  singularity 
may  be  classified  as  one  or  other  of  an  isolated  point,  a  double  point 
(with  distinct  or  coincident  tangents),  or  a  cusp  of  the  first  or  second 

species. 

§  6 -60.  Singular  points  of  order  n.  The  discussion  of  such  points 
is  very  similar  to  the  case  n  =  2,  and  may  be  rapidly  sketched.  We  have 
already  proved  that  any  branch  touches  one  of  the  lines  defined  by 
<l>n  =  0.  We  have  therefore  only  to  consider  the  existence  and  form  of 
the  branch  or  branches  associated  with  any  given  factor  of  <^n.  Let  the 

given  factor  be  y,  of  multiplicity  k^n.    Then/(.r,  I/)  =  0  takes  the  form 

/«An-fc  («^',  y)  +  <f>n+l  (^,  y)  +  I^n+l  =  0- 
Put  y  =  ux,  so  that  w  — >  0  for  the  branches  in  question,  and 

li^xl/n-k  (1,  U)  +  ̂ <;^n+l  (1,  U)  +  B'n+-,  =  0, 

where  iA„-i(l,  0)4=0,    R'n^i=0(a^). 

Case  (1).  ̂ -=1.  The  origin  is  an  ordinary  point  of  the  (u,  x)  curve 
and  Theorem  1"5I  applies.  There  exists  exactly  one  branch  touching  each 
line  defined  hy  a  simple  factm"  of  <j>n. 

Cctse  (2).  k>\,  but  <t>n+i (1,0)  +  0.  Theorem  1*51  applies  and  shows 
that  there  exists  a  unique  function  of  u  such  that 

X:^u''<t>(ll)         (<^  (0)4=0). 

If  k  is  odd  arguments  similar  to  those  used  in  Theorem  6*42,  Case  (3), 
show  that  the  relation  between  x  and  u  can  be  put  in  the  form 

u  =  x'i^g{x'i^)     (^(0)  +  0), 
so  that  u  is  real  for  real  x  near  (0,  0)  and  changes  sign  with.  x.    Hence 

and  ydoes  not  change  sign  with.r.  There  is  thus  one  branch  corresponding 
to  thi%  factor  of  <^h  which  touches  it  at  the  origin  without  an  inflexion. 
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Ifh  is  even,  we  obtain  in  the  same  way 

U  =  ±  {axy"" g  {±  {axyi'']      {a=\l<l>  (O)). 
Here  u  is  real  only  when  x  has  the  sign  of  a,  and  y  has  opposite  signs 
on  the  two  branches.  There  are  therefore  two  branches  to  the  (^,  x) 
curve  corresponding  to  this  factor  of  <^„,  which  touch  it  and  form  a 
cusp  of  the  first  species  at  the  oingin. 

Case  (3).  k>\  and  <t>n+i  (1,  0)  =  0.  In  this  case  the  (u,  x)  curve  has 
a  singularity  of  order  not  greater  than  k  at  the  origin  {k  ̂  n).  We  make 
a  fresh  start  to  analyse  the  {u,  x)  singularity,  and  proceed  as  before.  If 
the  curve  is  algebraic,  the  process  will  terminate  at  some  stage,  since 

k<:n  and  each  step  consumes  more  terms. 

EXAMPLES  VI 

(1 )  The  various  species  of  singular  points  of  the  second  order  are  illustrated 

by  the  following  algebraic  curves  at  the  origin  of  coordinates. 

Isolated  point :  x^+y'^-{-a^  =  0. 

Double  point  with  distinct  tangents:  x^+y^-Zaxy=0. 

Cusp  of  first  species:  y2_^=o. 

Double  point  with  coincident  tangents :  y^{\-\-x)- X^=0. 

Cusp  of  the  second  species :  (y  —  x^Y  —  -^  =  0. 

(2)  Singularities  of  x=<^i{t\  y  =  ̂ 2(0-  -A.  singular  point  is  one  at  which 

</)i'  {t)  =  (f)2  {t)  =  0.  It  may  be  assumed  that  the  point  corresponds  to  ̂ =0,  and 
that  ̂ 1  (0)  =  ̂ 2  (0)  =  <^-    By  suitable  change  of  axes  we  can  arrange  that 

x  =  atPf,{t)         (p^2,/i(0)  =  l), 

y  =  btP^-fo{t)     (a>0,/2(0)  =  l). 

Any  existent  branch  touches  y=0. 

Case  (1).  p  odd.  The  relation  between  x  and  t  can  be  replaced  by  a  unique 
relation 

so  that  t  changes  sign  with  x.    We  have  also 

-KS'^-^M©""}  ̂ ''^«^->- 
If  a  is  odd,  y  does  not  change  sign  with  x.  If  a  is  even,  y  changes  sign  with 

X.  In  either  case,  there  is  one  branch  of  the  curve  through  (0,  0)  touching 

y = 0,  with  in  the  latter  case  y = 0  for  an  inflexional  tangent.  There  is  apparently 

no  singularity,  but  really  one  of  a  concealed  nature,  for  d^y/dx^  —>  cc  as  x  —^  0, 
if  a  <  Pi  and  whatever  value  a  has,  some  differential  coefl&cient  is  discontinuous 

at  (0, 0).  * 
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Case  (2).  p  even.    We  have 

Thus  t  and  y  only  exist  for  values  of  x  on  one  side  of  (0, 0),  such  that  xja  >  0. 

There  are  two  branches  touching  y =0  at  (0, 0)  and  forming  a  cusp  of  the  first 
species  if  a  is  odd  and  a  cusp  of  the  second  species  if  a  is  even,  provided  it  is 

not  the  case  tliat  h  (X)  is  an  even  function  of  X.  In  this  latter  case,  there  is 

only  one  branch  when  a  is  even. 

(3)  Radius  of  curvature  at  a  cusp. 

Let  P  be  a  cusp,  Q  a  point  which  tends  to  P  along  either  branch  of  the 

curve,  and  p  the  radius  of  curvature  at  Q.  Then  as  ̂   — ^  P,  p  — >  0,  if  P  is  the 
simplest  type  of  cusp  of  first  species. 

On  the  other  hand  p  usually  has  a  finite  limit  (different  from  zero)  if  P  is 

the  simplest  type  of  cusp  of  the  second  species  though  exceptionally  p  — >  oo  . 
Consider  the  more  complicated  cases. 

(4)  Discuss  the  form  of  the  evolute  of  a  curve  near  the  point  corresponding 

to  a  stationary  value  of  p  {dpjds  =  0)  on  the  original  curve.  Show  that  in  general 
the  evolute  has  a  cusp  of  the  first  species. 

(5)  Show  that  in  general  a  cusp  of  the  second  species  on  a  given  curve 

corresponds  to  a  point  of  inflexion  on  the  evolute. 

CHAPTER  VII 

ASYMPTOTES  OF  PLANE  CURVES* 

§  7 '10.  Definition  of  ''P— >oo."  If  P (x,  y)  is  a  point  on  the 
curve  f{x,  y)  =  0,  and  if  P  moves  along  the  curve  so  that  one  at  least  of 

X  and  y  tends  to  -^  cc  07'  to  —  cc^  then  P  is  said  to  tend  to  infinity,  and 
we  write  p  __^  oo 

Definition  of  an  asymptote.  If  P  be  a  paint  on  the  curve  y  =f{x) 

and  P— >  00,  and  if  the  shoo^test  distance  of  P  from  the  curve f  (or  a 

branch  of  it)  g{x,y)  =  0 

tends  to  0  as  P  —>  cc,  then  the  curve  {or  the  branch  of  the  curve) 

g  (x,  y)  =  0  is  said  to  be  an  asymptote  of  the  curve  y  =f(x). 

*  d.l.V.P.,  Vol.  II,  pp.  391-393. 
+  This  shortest  distance  will  exist  provided  the  curve  (or  branch)  is  continuous. 
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If  the  curve  g  Qc,  3/)  =  0  is  a  straight  line 

then  this  straight  line  is  said  to  be  a  rectilinear  asymptote  of  y=f{a)); 
this  name  may  be  shortened  to  asymptote  when  there  is  no  possibility 
of  confusion. 

§  7  '20.  Properties  of  asymptotes.  The  following  theorems  explain 
the  definition  and  are  of  general  utility  in  obtaining  asymptotes  to  a 

given  curve. 

Theorem  7*21.  In  m-der  that  g  (^,  y)  =  0  may  be  an  asymptote  to  the 
curve  y  =/(^)  it  is  sufficient  that^  asP—>  00  along  y  =/(^),  the  distance  of 

Ptog  {x,  y)  =  0,  measured  parallel  to  a  fixed  dit^ection^  should  tend  to  zero. 
For  such  a  distance  is  certainly  not  less  than  the  shortest  distance, 

which  therefore  tends  to  zero. 

In  the  particular  case  of  a  rectilinear  asymptote,  which  is  the  im- 

portant case,  this  condition  is  also  necessary*,  if  the  proviso  be  in- 
serted that  the  fixed  direction  is  not  parallel  to  the  given  straight  line 

g{x,y)  =  0;  for  then  this  oblique  distance  bears  a  constant  finite  ratio 
to  the  shortest  distance. 

Theorem  7 '22.  In  order  that  the  straight  line  x  =  a  may  be  an 
asymptote  to  the  curve  y  =f{x)  (with  cooi'dinates  rectangular  or  oblique)y 
it  is  necessary  and  sufficient  that 

either  a^x—^a  +  0,orasx—¥a-Of. 

The  two  cases  do  not  need  separate  treatment.  Suppose  x—>a-  0. 
If  P  be  the  point  (x,  y)  on  the  curve,  then  P  — >  00  as  ̂ r  — >  a  —  0. 
Moreover,  the  shortest  distance  from  P  to  x-a^O  is  («-;r)sintu, 
where  co  is  the  angle  between  the  coordinate  axes,  and  therefore  tends 
to  0  as  P  ̂   00 .  Thus  the  condition  is  sufficient,  and  it  is  plainly  also 
necessary. 

A  similar  theorem  could  be  given  for  asymptotes  of  the  type  y  =  by 
but  this  case  is  covered  by  the  next  theorem. 

Theorem  7 '23.  In  m'der  that  the  curve  y  =  g{x)  should  be  an 
asymptote  of  the  curve  y  =f(x),  it  is  sufficient  (but  not  necessary)  that 

f(x)-g(x)-^0 as  x—>  cc. 

*  The  condition  is  not  necessary  for  general  asymptotes.    See  Theorem  7*23. 
t  Or  both,  of  course,    x  — ►  a  +  0  means  that  x>a,  and  x  — ►  a,  while  .r  — >  a  -  0 

means  that  x  <  a,  and  x  — >  a. 
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This  is  merely  a  simplification  of  Theorem  7*21,  so  far  as  the 
sufficiency  of  the  condition  is  concerned.  To  show  that  the  condition 

is  not  necessary,  we  have  only  to  prove  that,  e.g.,  if  a>l,  y^af-  is 
asymptotic  to  y  =  af--^\.  We  have,  in  the  first  quadrant,  for  the  former 
curve  ir  =  +  y*,  and  for  the  latter  x  =  {y  +  \y'^.  Hence  the  difference 
between  the  curves  measured  parallel  to  the  ;r-axis,  for  a  given  value 

ofy,  is  (^y^iy:a_yi:a^ 

which  tends  to  0  as  y  -*  oo ,  if  1/a  <  1. 
In  the  case  of  rectilinear  asymptotes,  however,  when  g  (x)  =  cx+  dj 

this  condition  is  necessary  as  well  as  sufficient,  as  we  have  already 
stated. 

Before  passing  on,  it  is  well  to  state  explicitly  the  following  almost 
obvious  facts,  which  are  constantly  used  in  the  following  sections. 

If  the  straight  line  y  =  cx  +  d  is  an  asymptote  to  the  curve  y  =f(x) 

*^^  f{x)^cx,    f{x)-cx^d 
and  conversely. 

§  7*240.  Asymptotes  as  the  limits  of  tangents  or  chords.  An 
asymptote  is  sometimes  defined  as  the  limit  of  a  tangent  whose  point 
of  contact  tends  to  infinity.  Asymptotes  however  may  exist  in  the  sense 

of  the  definition  of  §  7 '10  when  the  tangent  has  no  limit*,  as  its  point 
of  contact  tends  to  infinity.  This  fact  shows  that  "the  limit  of  the 

tangent"  is  not  a  suitable  definition  of  an  asymptote.  The  precise 
relations  between  asymptotes  and  tangents  are  defined  by  the  following 
theorems. 

Theorem  7 '241.   If  a  tangent  to  the  curve 

whose  point  of  contact  is  P,  has  the  limit 

y  =  cx  +  d 
as  P—>  cc ,  then  y  =  cx  -k-  d  is  an  asymptote. 

The  tangent  at  the  point  P  ($,  rj)  is 

y-f'{^)^-{v-a"m  =  o. 
Suppose  for  example  that,  as  ̂   — >  +  oo ,  this  tangent  tends  to  the  limiting 
position  y_cx-d  =  0; 
i.e.  suppose  that 

*  The  curve  need  not  even  have  a  tangent. 
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If  c  4=  0,  /'  (^)  -^  c,  and  therefore  ■*^/(^)  ̂   c^.    Therefore 

f    /(f)     f/(l)""U/(f)/' 

On  integrating  we  have 

J+logf-log/(|)  +  |  =  <,(i), 

"£fexp(i/cf)- /(« 

But,  as/(^)  -^  c$,  we  must  have  B  =  c.    Therefore 

and  so  finally 

/($)  =  c$  +  d  +  o{l)', or  in  other  words 

y  =  ca^  +  d 
is  an  asymptote.    The  case  c  =  0  alone  remains  to  be  considered. 

In  this  case  we  have  to  prove  that  if 

/•(«-»0,    /(i)-if(i)^d, 
then  /($)  —>  d.    Let  us  write 

/(i)=9{i)-i; then 

Therefore,  by  what  we  have  already  proved, 

g($)-i  +  d  +  o(l), so  that 

/(i)  =  d  +  o{ll 

as  was  to  be  proved.    It  follows  that  3/  -^  c?  is  an  asymptote  and  the  proof 
of  our  theorem  is  completed. 

If  the  tangent  has  a  limiting  position,  it  follows  from  the  proof  of 
the  last  theorem  that 

(7-2411)  /'(f)  =  c+o(i). 
This  condition  is  however  not  in  itself  sufficient  to  imply  the  existence 

*  By  I'Hospital's  theorem,  d.l.V.P.,  Vol.  i,  p.  124. 
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of  a  limit.  For  example,  if/C^r)  =  cx  +  log  log  x,  f  (^)  satisfies  7 '2411, 
but  no  asymptote  y  =  cx  +  d  exists. 

The  geometrical  meaning  of  this  necessary  condition  7*2411  may  be 
mentioned  in  passing.  It  is  that,  unless  the  slope  of  the  tangent  tends 
sufficiently  rapidly  to  its  limit,  the  point  of  intersection  of  the  tangent 

and  the  y-axis  for  example  will  not  remain  within  a  finite  distance  of 

the  origin  and  "the  limit  of  the  tangent  will  lie  wholly  at  infinity". 

Theorem  7*242.  Under  the  same  conditions  as  in  the  last  theorem, 
the  asymptote  is  the  limiting  position  of  a  chord  two  oj  whose  points  of 
intersection  with  the  curve,  say  P,  Q,  together  tend  to  infnity  in  a 
direction  in  which  the  curve  is  asymptotic  to  its  asymptote. 

Let  P  be  (li,  Vi)  and  Q  be  (^2,  V2),  and  suppose  that 

^1  — »  +  GO  ,      ̂2  — >  +  00  . 

Then  the  chord  is 

=/'(f)(^-a 
where  4  >  ̂  >  %i  j  by  the  mean  value  theorem,  supposing  that  I2  >  ̂1  • 

Since/'  ($)  — >  c,  we  have  only  to  prove  that 

^        4(/'(f)-c)->0. 
But  this  follows  at  once  from  the  facts  that  (by  7*2411) 

and  ̂ 1  <  iy  and  so  the  theorem  is  proved. 
The  restrictive  hypothesis  needed  in  the  two  last  theorems  is  of  some 

interest.    Its  necessity  may  be  illustrated  by  the  curve 

y  =f{x)  =  ex  +  x~'^  sin  (x^). 

If  a>0,  y  =f(x)  has  the  asymptote  y^cx  &s  x^>  cc,  but/'  (x)  has  no 
limit  as  ̂   ̂   Qo  unless  a  >  1.    If  a  >  1, 

/'  (x)-c  =  2x^~'^  cos  (a^)  -  ax~^~'^  sin  {or)  — >  0, 
but 

^(/'(^)-c)->0 
if  and  only  if  a  >  2.  In  this  case  only  (a  >  2)  the  tangent  tends  to  the 
asymptote.  This  example  illustrates  what  we  stated  above,  namely  that 

the  "  limit  of  a  tangent  whose  point  of  contact  P  is  such  that  P  — »  qo  " 
or  "the  limit  of  a  chord  etc."  are  unsuitable  as  definitions  of  a  rectilinear 
asymptote  except  perhaps  for  algebraic  curves,  where  the  restrictions 
are  always  satisfied. 
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§  7 '250.  The  preceding  definition  and  theorems  have  been  stated  as 
referring  to  a  curve  y=f{x).  They  all  apply  without  change  to  any 
branch  of  the  curve  f{x,  y)  =  0  which  satisfies  the  conditions  of  the 
implicit  function  theorem,  and  so  can  be  expressed  in  the  form 

y  =  xlf{x)  {x>Xo),    or    x  =  xp{y)   {y>y,). 
As  some  such  conditions  are  essential  to  enable  us  to  assert  the  existence 

of  the  branch  in  question,  they  form  no  restriction  on  the  generality  of 
the  foregoing  discussion. 

For  a  curve  given  in  polar  coordinates  by  the  equation  r  =f{B\  the 
fundamental  theorem  is  the  following. 

Theorem  7 '25 1 .   Ifr^>co  as  6—>a  and  if 

then  the  straight  line 
r  sin  (a  -  ̂)  =  6 

is  an  asymptote  to  the  curve;  and  conversely. 
The  proof  is  left  to  the  reader. 

§  7*30.  Asymptotes  of  algebraic  curves.  In  the  case  of  an  algebraic 
curve,  the  behaviour  of  any  branch  as  ̂ '  — >  oo  or  (and)  y  — »  oo  can  always  be 
reduced,  by  a  suitable  substitution,  to  the  study  of  the  branches  of  an  algebraic 

curve  in  the  neighbourhood  of  the  origin.  For  example,  suppose  both  .r  — ^  oo 

and  ?/—>».    The  equation  of  the  algebraic  curve  can  be  written  in  the  form 

(7-301)  <^n(.^,3/)  +  <^u-i(^>y)  +  -  +  0o  =  O, 

where  ̂ ,.  (^,  y)  is  a  polynomial  in  x  and  y,  homogeneous  and  of  degree  r. 

Write  j;=\ja)\  y  =  \ly'.    Then  7"301  in  general  transforms  into 

(177)^  ̂''  ̂̂ ''  -^^  "^  WY^^  "^^ - 1  (3/',  ̂0  + . . .  +  00  =  0, 

or  <\)n  (y\  ̂')  +  ̂ Y  0n  -  1  (y',  ̂ )  +  •  • .  +  (■^''Y)"  <^o  =  0. 
We  have  therefore  to  study  the  form  of  the  branches  of  this  curve  in  the 

neighbourhood  of  the  origin,  which  is  a  multiple  point  of  order  n.  This  is  the 

problem  whose  solution  was  sketched  in  §  6  60.  It  is  convenient  however  to 

develop  an  alternative  direct  method  of  attack,  though  it  should  always  be 

borne  in  mind  that  the  study  of  the  asymptotes  of  algebraic  curves  is  identical 

theoretically  with  the  study  of  the  form  of  the  branches  through  a  singular 

point. 
When  we  discuss  the  existence  of  branches  belonging  to  any  possible 

asymptote,  we  shall  in  general  reduce  the  problem  by  a  substitution  to  the 

problem  of  the  existence  of  a  branch  touching  a  definite  straight  line  through 

the  origin;  for  to  any  chosen  asymptote  a  definite  tangent  at  the  origin  is 

made  to  correspond  by  the  substitution.  This  provides  a  convenient  way  of 

specifying  precisely  what  is  meant  by  a  single  branch  or  branches  of  the 
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algebraic  curve  near  infinity.  The  branch  associatecl  with  a  particular  asymptote 

means  the  branch  corresponding  to  that  which  touches  a  particular  tangent  at 
the  origin  of  the  transformed  curve. 

Suppose  that  f(x,y)  =  0  is  the  equation  of  an  algebraic  curve  of  degree  w, 

which  may  be  put  into  the  form  7"301.  We  shall  attempt  to  find  the  rectilinear 
asymptotes  of  the  various  branches  of  this  curve  which  are  not  parallel  to  the 

axis  of  y,  i.e.  asymptotes  of  the  form 

y  =  ex  +  d. 

It  is  clear  that  an  exactly  similar  procedure,  on  interchanging  x  and  y,  will 
find  for  us  the  asymptotes  of  the  form 

x=cy-\-d, 

i.e.  those  not  parallel  to  the  axis  of  x.  The  apparent  exception  does  therefore 

not  limit  the  generality  of  the  discussion. 

As  P^  00  along  a  branch  of  the  cxivve  f{x,y)=Q  in  a  direction  {x—^-^-cc 

say)  asymptotic  to  the  asymptote  y=cx-\-d,  we  have 

yr^cx^  y  —  cx—^d. 

Writing  y  =  tx,  x=l/x'  in  equation  7*301  and  dividing  through  by  x^,  we  have 

(7-302)  0„(l,O+-^>n-i(l,O  +  ...=O, 

an  equation  giving  t  in  terms  of  x'. 
Now  by  hypothesis  ̂   — >  c  as  .r  — ♦  oo ,  i.e.  as  a/  — »  0,  so  that  t  remains  finite 

as  x'  — ►  0.    Moreover,  it  satisfies  an  equation  of  the  form 

ao«^  +  «i«^-H...  +  K+o(l))=0,   (X^w). 
Now  the  roots  of  such  an  equation  are  continuous  functions  of  a^  the  constant 

term.    Therefore,  as  a/  — >  0,  t—>a,  where  a  is  the  root  of  the  equation 

i.e.  of 

(7-303)  *  <t>n{ha)^0. 
We  have  therefore  found  that  the  first  condition  to  he  satisfied  hy  the  asymptote 
y  =  cx  +  d  is 

(7-31)  (^„(l,c)=0. 

Unless  this  equation  has  real  roots  there  will  be  no  asymptotes  of  the 

assumed  form.  Let  us  suppose  therefore  that  c  is  a  real  root  of  this  equation. 

Writing  y=cx+v=v  +  c/x^,  and  substituting  for  y  in  the  equation  of  the  curve, 
we  have 

<t)n{^,  cx  +  v)-\-(f)n_i(x,  cx  +  v)-\-...  =  0. 

It  is  required  that  v—>d,  as  x—>  oo .  On  dividing  through  this  equation  by 
X";  we  have 

<t>n{'^,c  +  x'v)-\-x'(t)„_i{l,c  +  x'v)-h...  =  0, 

and,  by  applying  Taylor's  theorem, 

A-'y0^'(l,c)  +  |a?'3v20„"(l,c)-h...+.r>„_i(l,c)  +  .^'2y0'„_i(l,c)  +  ...  =  O. 
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The  number  of  terms  in  each  expansion  is  finite,  so  that  there  is  no  question  - 
of  validity.   Suppose  now  that 

0„'(l,c)=#O,  j 
i.e.  that  c  is  a  simple  root  of  the  equation  0,^  (1,  ̂ =0.    Then  v  satisfies  the  I 
equation  ; 

where  i/r  is  a  polynomial  in  v  and  x'  of  degree  n  at  most.    Since  v —^  d,  v  re-  ! 
mains  finite  as  x'  — ►  0,  and  therefore  ^ 

>/.Ky)=0(l).  ; 

Therefore,  by  a  repetition  of  our  preceding  arguments,  d  must  be  a  root  of  the 
equation  -! 

i.e.  i 

(7-32)                                c?=-0„_i(l,c)/(^„'(l,c)  : 

provided  </>„'(  1 ,  c)  4=  0.    We  have  therefore  found  that  if  y  =  cx-{-d  is  an  asymp-  j 
tote  then  •{ 

<^„(i,c)=o,  ; 

and  if  c  is  a  simple  real  root  of  0,^  (1,  c)  =  0  then 

c^=-0„_i(l,c)/0,/(l,c).  ^ 
We  must  now  consider  the  case  \ 

in  which  c  is  a  multiple  root  of  (^«  (1,  t)  =  0.    Suppose  first  of  all  that  j 

<^«-i  (1,^)4=0.  I 

Then  the  equation  satisfied  by  v  may  be  written  ̂ ^.i  {l,c)+x'ylr  {v,  x')  =  0,  and 
as  V  is  to  remain  finite  as  x'  — >  0,  we  have  " 

<t>n-.l{hc)  +  0{x')  =  0,  I 

which  contradicts  0„_i(l,  c)4=0.    There  is  therefore  in  this  case  no  rectilinear  '. 
asymptote.  ij 

Let  us  now  suppose  that  \ 
<^„-i(l,c)=0.  I 

Then  the  equation  satisfied  by  v  may  be  written  ^ 

^  x'^v^  <^/  (1,  c)  +  ̂̂ '3^0„"'  (1,  c)  + ...  +^2^0'„_i  (1,  c)  I 

or                     ̂ ^20/  (1,  c)  +  ?;0Vi  (1,  c)  +  0^2  (1,  c)  +  0{x')  =  0.  , 

It  follows  that,  provided  either  0/  (1,  c)4=0  or  (^'„_i  (1,  c)^0,  d  must  satisfy  j 
the  quadratic  (possibly  linear)  equation  [ 

(7-33)                 id^cfin"  (1,  c)  +  o?(^'«_i  (1,  c)  +  0„_2  (1,  c)  =  0 ;  j 
that  if  (f)n"  (1,  c)=0,  (t>'n-i  (1,  c)  =  0,  and  <^„_2  (1,  c)4=0,  there  is  no  rectilinear  J 
asymptote  of  this  type;   while  if  (^„"  (1,  c)  =  0Vi  (1,  c)  =  <^„_2  (l,c)=0,  the  J 
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matter  is  still  uncertain.  We  then  continue  the  above  process  and,  since  the 

degree  of  the  equation  is  finite,  the  process  must  eventually  terminate,  leaving 

us  either  no  asymptotes  of  the  assumed  type,  or  else  equations  by  which  to 
determine  c  and  d.  We  can  sum  up  the  results  of  the  preceding  discussion  as 
follows. 

In  order  that 

y=cx-\-d may  he  an  asymptote  of  the  curve 

0n(-^,y)  +  <^n-i(^,y)  +  ...=O, 

it  is  necessary  that  c  should  be  a  real  root  of 

and  that^  if  c  is  a  simple  root  of  this  equation, 

^=-0«-i(l,c)/(/,„'(Lc). 

If  c  is  a  multiple  root,  there  is  tw  asymptote  unless 

If  also  <j)n-i  (I5  <^)  =  0»  f^^  ̂   must  satisfy  the  equation 

hd''cfy,:'{l,  c)+d<t)'n-i  (1,  c)+<^n-2  (1,  c)=0 
provided  this  equation  contains  d ;  and  so  on. 

A  less  explicit  but  more  compact  statement  of  these  facts  may  be  made  as 

follows.  We  first  of  all  notice  that,  on  substituting  y  =  v  +  cfx'  into  the  equation 
of  the  curve,  and  reducing,  we  eventually  obtain  in  all  cases  an  equation  of 
the  form 

(7-331)  ^(v,c)+^Xv,c)  +  ...=0, 

where  >//■  (y,  c)  is  polynomial  in  v  and  c  which  is  not  identically  null,  but  which 
may  or  may  not  contain  v.  It  follows  that  d  must  be  determined  by  the 

equation 

(7-332)  y\r{d,c)  =  0, 

and  that  if  this  does  not  contain  d  then  there  is  no  rectilinear  asymptote  for 

this  particular  value  of  c.    Then  we  may  say  that  in  order  that 

y  =  cx-\-d 
may  he  an  asymptote  of  the  curve 

0»  (-^^  3/)  +  (^„_i  (^,  y)  + . . .  =  0, 

it  is  necessary  that  c  should  be  a  real  root  of 

and  that,  lohen  a  value  of  c  has  thus  been  determined,  d  should  b6  a  real  root  of 

ylr{v,c)  =  0. 
If  there  is  no  such  real  root  there  are  no  rectilinear  asymptotes  for  this  value 

of  c. 
F.  7 
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There  is  yet  one  more  necessary  condition  that  follows  from  the  assertion 

that  9/=ca.'+dm  an  asymptote,  namely  that  there  should  exist  a  real  branch 
of  the  curve  /  (x,  y) =0  of  the  form 

i/  =  cx-\-d+Uj 

where  u—^Oasx  — >  oo  (or  as  ̂   — >  —  oo  as  the  case  may  be).  On  substituting 

d+u  for  V  in  equation  7 '331  we  have 

(7-333)  ylf{d-\-u,c)-\-x'ylri{d  +  u,c)  +  ...=0, 
or  for  the  sake  of  shortness 

x{d+u,c,x')^0, 
and  the  necessary  condition  that  we  require  is  that  equation  7*333  admits  at 

least  one  real  root  u  {a/)  such  that  u  {x')  — >  0  as  a?'  — ^  +  0  [or  as  ̂ '  — >  -  0  as  the 
case  may  be].  The  problem  is  thus  reduced  to  the  ordinary  problem  of  the 

existence  of  implicit  functions,  and  admits  the  solutions  of  Theorem  1'51  or 
Chapter  VI. 

It  may  be  noticed  that  the  sign  of  u  {x')  determines  whether  the  curve  lies 
above  or  below  its  asymptote  for  large  values  of  x^  and  that  if  u  {x^)  exists  and 

u  (of)  —♦0  as  a/  — >  +  0,  or  as  y  — >  -  0,  the  curve  approaches  its  asymptote  as 
^— >+oo  oras;r— >-oo  respectively. 

It  is  easily  seen  that,  vnth  the  addition  of  the  last  condition,  the  foregoing 

necessary  conditions  for  the  existence  of  rectilinear  asymptotes  are  also 

sufficient.  We  may  therefore  enunciate  the  following  theorem,  which  embodies 

one  of  the  usual  rules  for  obtaining  rectilinear  asymptotes. 

Theorem  7  34.   Rule  I  for  Asymptotes.    In  order  that 

y  =  cx-\-d may  be  an  asymptote  of  the  curve 

0n  (^',  y) + (f>n-i  (^,  y) + . . . = 0, 
it  is  necessary  and  suffi,cient  (1)  that  c  shoidd  he  a  real  root  of 

<^n  (1,0=0; 
(2)  that  when  c  has  so  been  chosen,  d  should  be  a  real  root  of 

^{v,c)  =  0; 
and  (3)  that  when  d  has  so  been  chosen 

x{d-\-u,c,x')  =  0 
should  admit  at  least  one  real  root  u  {x')  such  that  u  {xf)  —^Oasx'—^  +  Qor  {and) 
as  x'  — ►  —  0. 

Here  ̂ {v,  c)  and  xi^^+'^i  <^>  ̂)  ̂ r®  certain  polynomials  which  have  been 
defined  in  the  course  of  the  foregoing  discussion.  The  existence  of  the  branch 

u  {x')  may  be  discussed  when  necessary  by  the  methods  of  Chapter  VI. 

§  7*40.  Asymptotes  parallel  to  the  axes  of  coordinates.  It  is  of  interest 
to  consider  in  greater  detail  the  case  in  which  zero  is  a  possible  value  of  c,  i.e. 

in  which  <^„(1,0)  =  0. 
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We  note  that  ̂ „  (1, 0)  is  the  coefficient  of  x"^.    In  this  case 

G?=  -  (/,„_!  (1,  0)/(^„'  (1,  0)  ((/),'  (1,  0)  +  0). 

Now  ̂ „'(1,  0)  is  the  coefficient  of  t  in  ̂ ^(1)  0)  ̂i^d  ̂ „_i  (1,  0)  is  the  term, 
indei^endent  of  t  in  <^n-\  (Ij  0-    Hence 

y</,„'(l,0)  +  </,^i(l,0) 

is  the  coefficient  of  ̂ "~i,  i.e.  of  the  highest  power  of  x  in  /(^,  y).    Moreover 

y<^n'(l,0)+(^«_i(l,0)  =  0 
is  a  possible  asymptote,  and  effectively  one  if  condition  (3),  that  a  suitable  real 
solution  of 

exists,  is  satisfied.  Again  if  ̂ »'  (1,  0)=0,  and  ̂ „_i  (1, 0)  =  0,  c?  is  determined 
by  the  equation  (unless  meaningless) 

^0?2<^„"  (1,  0)  +C?0'n_l  (1,  0)  +  0,,_2  (1,  0)  =  0, 
and  the  asymptotes  if  they  exist  are  given  by 

i/K'(l,O)+y0'„_i(l,O)  +  0,_2(l,O)=O, 

where  the  expression  on  the  left  is  tl)e  coefficient  of  ̂ ""^^  i.e.  of  the  highest 
power  of  X  in  /(a?,  y).  It  is  easy  to  see  that  this  holds  in  general,  and  therefore 

that  all  possible  asymptotes  of  the  form  y—d  may  be  obtained  by  equating  to 

zero  the  coefficient  of  the  highest  power  of  x  occurring  in  the  equation/(a^,  y)= 0. 

It  should  be  observed  that  this  rule  can  only  be  effective  when  the  term  a" 
does  not  occur.  We  may  therefore  state  the  following  theorem  embodying 
this  rule. 

Theorem  7  41.  Rule  II  for  Asymptotes.  Rectilinear  asymptotes  parallel 

to  the  axis  of  y  {x)  can  only  exist  if  the  term  in  y^  {x^)  does  not  occur  in  f{x,  y). 
When  they  exist,  they  can  be  obtained  by  equating  to  zero  the  coefficient  of  the 

highest  power  of  y  ix)  occurring  in  f{x,  y).  Condition  (3)  must  be  shown  to  be 

satisfied  for  each  line  so  obtained,  before  we  may  assert  that  such  a  line  is  actually 

an  asymptote. 

§  7 -50.  Existence  of  branches  of  the  curve,  asymptotic  to  the  asymp- 
tote. It  is  important  to  call  attention  to  certain  general  cases  in  which  con- 
dition (3)  is  automatically  satisfied,  and  in  which,  therefore,  when  we  have 

obtained  c  and  d  we  can  at  once  aissert  that  y = ex -\- d  \9,  axi  asymptote*.  This 
we  do  in  the  following  theorem. 

Theorem  7  "51.  If  d  is  a  simple  root  of  >//-(v,  c)  =  0,  or  in  particular  if  c  is 
a  simple  root  of  ({){l,t)  =  0,  then 

y  =  cx-\-d 
is  an  asymptote,  and  moreover  asymptotic  to  a  single  hranch  of  the  curve  both  as 

X  — >  -f-  X  and  as  ̂   — >  —  x  .  The  branch  in  general  lies  on  opposite  sides  of  the 
asymptote  at  the  two  ends. 

*  Cf.  §  6-60. 
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If  c  is  a  simple  root  of  0  (1,  0  =  0,  we  have  already  seen  that  the  equation 

determining  d  is  linear,  and  therefore  that  c^  is  a  simple  root  of  >/a(v,  c)  =  0. 
When  this  is  so,  the  equation  determining  w,  namely, 

>//•  (o? + M,  c)  +  x' •v/rj  (fl? + w,  c)  +  . . .  =  0, 
may  be  written 

X  {u,x')  =  uyJA'id,  c)  +  ̂u^yfr"{d,c)  +  ...+x'ylri{d+tc,c)  +  ...=0, 

where  yj/'  {d,  c)=|=0,  and  the  values  (0, 0)  satisfy  the  equation.   The  origin  of  the 

curve  X  (w,  x')  =  0  is  therefore  an  ordinary  point,  since  (  ̂  )  4=0.  It  follows  by 

the  Existence  Theorem  1-51  that  a  unique  function  u{jf)  exists  for  values  of 

x'  such  that  \af\  <  k,  and  that  u  {of)  — >  0  as  |  ^'  |  — >  0.  Further  u  {x')  in  general 
changes  sign  with  xf.  Condition  (3)  is  satisfied,  and  our  theorem  is  proved. 

This  corresponds  to  the  case  ̂ =1  of  §  6  60. 
We  may  apply  the  preceding  reasoning  to  Rule  II,  and  obtain  the  following 

theorem  analogous  to  7*51. 

Theorem  7*511.  If  the  highest  power  of  x  is  .r""i,  and  if  its  coejfficient  is 
a^  +  b{a^O\  then  ay-\-h  =  (iis  an  asymptote^  asymptotic  in  both  the  directions 

y—^  +  aD,y—^-cc  to  a  single  branch  of  the  curve. 

AVe  may  observe  here  that  the  need  for  condition  (3)  is  simply  in  order  to 

exclude  the  possibility  of  u  {x')  being  complex  for  real  values  of  x'  however 
small.    Since  (0,  0)  is  always  a  point  on  the  algebraic  curve 

X{d  +  u,c,x)  =  {\ 

there  always  exist  one  or  more  functions  u  {x'\  such  that  u  {x')  — >  0  as  |  ^•'  |  — >  0, 
if  complex  values  are  admitted.  In  this  case  too,  complex  values  of  c  and  d 

may  also  be  admitted,  and  to  such  a  pair  will  correspond  a  branch  of  the  curve 

(necessarily  complex).  The  need  for  condition  (3)  arises  from  the  fact  that 

while  to  complex  asymptotes  correspond  complex  branches  of  the  curve,  to 

real  asymptotes  do  not  necessarily  correspond  real  branches.  The  corresponding 

phenomenon  in  the  case  of  singular  points  is  the  occurrence  of  an  isolated  point. 

If  we  strike  out  all  conditions  of  reality  for  real  values  of  x.  Theorem  7*34 
takes  the  simpler  form. 

In  order  that  y=cx-\-d  may  be  an  asymptote  of  the  curve 

it  is  necessary  and  suficient  (1)  that  c  should  be  a  root  of 

</,„(!,  0=0 
and  (2)  that  when  c  has  been  so  chosen  d  should  be  a  root  of 

ylA{v,c)==0. 
In  general  (f)n{l,t)  =  0  has  7i  distinct  roots.    We  may  therefore,  with  due 

caution,  say  that  in  general  a  curve  of  degree  n  has  n  rectilinear  asymptotes  real 

or  complex. 

§  7'60.  After  what  precedes,  the  reader  should  have  no  difficulty  in  giving 
a  strict  proof  of  the  validity  of  the  following  rule  for  the  rectilinear  asymptotes 

of  an  algebraic  curve. 
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Theorem  7 -61.  Rule  III  for  Asymptotes.  If  the  equation  of  an  algebraic 
curve  can  be  expressed  in  the  form 

n 

where  fn  (^, «/)  =  H  (a^ ̂  + 6,.y + c^), r=l 

andft_2  (-^i  y)  *5  of  degree  7i-2  at  most  in  x  and  y,  and  if  no  factor  of  f^  (^,  y) 
is  a  constant,  and  no  two  factors  of  f^  (x,  y)  represent  identical  or  parallel 

straight  lines,  then  the  curve  has  n  asymptotes  whose  equations  are 

ayX-\-hry  +  Cr=0       (r  =  l,  2,  ...  w). 

It  should  be  noted  that  in  this  case  all  the  lines  are  necessarily  asymptotes 

to  real  branches  of  the  curve  (Theorem  7*51). 

§  7*70.  Curvilinear  asymptotes.  We  have  seen  that  under  certain  con- 
ditions, although  c  is  a  real  root  of  ̂ ri  (!>  t)=^-,  yet  there  cannot  exist  any 

corresponding  rectilinear  asymptote.  [In  fact  in  such  cases  there  cannot  exist 

any  such  asymptote  even  if  complex  values  are  taken  into  consideration.]  An 

investigation  similar  to  the  preceding  shows  us  that  in  certain  cases  there 

exists  a  real  branch  off{x,  y)  =  0,  which  satisfies  the  relation  y  o-*  cr,  as  P-->  oo  , 

but  which  does  not  satisfy  the  relation  y  —  cx—>d  for  any  finite  value  of  d. 
In  order  to  obtain  a  knowledge  of  the  form  of  any  branch  of  the  curve 

f{x,y)=0  as  P— >oo,  it  is  necessary  to  undertake  a  further  investigation  of 
such  cases.  We  shall  find  that  instead  of  having  a  straight  line  as  asymptote, 

the  curve  has,  in  the  simplest  case,  a  parabola  as  asymptote.  We  proceed  to 

discuss  this  simplest  case  before  passing  on  to  the  general  one. 

Parabolic  asymptotes.    The  simplest  case  left  over  from  the  last  section  is 
that  in  which 

(^„(l,c)  =  (/)„'(l,c)=0,    0„-i(l,f)4=O; 
and  the  simplest  form  of  this  case  is  obtained  by  supposing 

</)„"(l,c)=|=0. 

We  wvi\^.  y=v  -\-  GX =v  ■\-clx' ,  and  note  that  we  must  have 

(7-72)  y  =  o(^). 
The  curve  then  takes  the  f<irm 

or  it'M<^n"(l,c)  +  o(l)}  +  .r{0„.i(l,c)  +  o(l)}  =  O. 
In  order  that  this  equation  may  have  a  real  solution  it  is  necessary  that 

X(l)n-i  (1,  c)/</)/  (1,  c)  <  0, 

i.e.  that  a;  — >  -  oo  if  <^n-i  0-,  ̂)l^n"  (!>  <^)  >  0,  and  x—>  +  cc  if 

(i>n-l{hG)/(f>n"{l,c)<0. 
It  will  be  sufficient  to  consider  one  of  these  cases,  for  instance  the  latter.   We  put 

(7-73)  "={-^<^«-i(l,c)/(^/(l,c)}i 
7—3 
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Then,  as  ̂   — >  +  oo  ,  it  is  necessary  that  either  v  (^  ax^,  or  y  o^  -  ax^^  both  of 

which  hypotheses  fulfil  the  condition  7'72.   We  must  therefore  have 

as  .x-  -->  +  00  ,  while  as  x  -^  —  oc  there  can  be  no  real  values  of  y  satisfying  7*72. 
We  have  still  to  go  a  step  further  before  we  find  an  asymptote  to  the  branch 

Putting  V—  ±a^i+M,  where  u—o  {x^\  we  find  that  u  must  satisfy 

±a.a2«{<^,/'(l,c)  +  o(l)}±a^i[0'n_i(l,c)+;^a20;''(l,c)  +  o(l)]  +  O(l)  =  O, 

or  u<^- </>'„_!  (1,  c)/<|),;'  (1,  c)  - a^<l),r  (1,  c)lQ<\)^'  (1,  c). 
Therefore  ive.  must  have 

as  x—^  00,  where  a  =  { - 2<^„ _ j  ( 1 ,  c)/<^„"  ( 1 ,  c)}^ , 

and  /3  =  -  0'„  _  i/0„"  +  0n  - 1  <l>n"' l^4>n"\ 

where  <^'„_i  e^c.  stand  for  </>'„_  i  (1,  c),  so  ̂ Aa^  the  two  branches  of  the  curve  {if 
they  exist)  must  he  asymptotic  to  the  two  arms  of  the  parabola 

{y-cx-^)^=a^x. 
It  only  remains  to  show  that  if  we  write 

y  z=  CX  ±  o.t'S  +  iS  4-  ?<', 
there  exists  in  both  cases  a  real  function  w  for  large  positive  values  of  x,  such 

that  t^— >Oas.r— >  +  oc  ;  this  follows  at  once  from  the  fimdamental  theorem 

1-51  in  the  manner  of  7 '50,  for  /3  is  the  root  of  a  linear  equation.  The  reader 

will  have  no  difficulty  in  supplying  the  details.  We  ha^•c  therefore  proved  the 
following  theorem. 

Theorem  7-74.   Parabolic  asymptotes.    Jf  c  is  a  root  o/"0„(l,  c')  =  0  such 
that 

-       <^„(l,c)  =  0„'(l,c)  =  O,    0„_i(l,c')4=O,    0;'(l,c')  +  O, 
then  there  eocist  two  branches  of  the  curve 

0«  (>^S  y)  +  </>«-!  (•*',  y)  + . . .  =  0 
which  possess  the  two  arms  of  the  parabola 

(y-c^  +  (^^,_i/(/)/-(/)„_i(^,/73(^„''2)2=  _2.^'(^„_l/0,/'     . 
for  parabolic  asymptotes. 

The  best  possible  parabola.    Before  leaving  this  simplest  case  it  should  be 

noticed  that  the  arms  of  any  pai'abola  of  the  form 

(?/  -ex  —  ̂ )2  =  aKv  +  ;x, 

where  /i  is  any  constant,  are  asymptotic  to  the  two  branches  of  the  given  curve,. 

We  can  in  fact  determine  fx  in  such  a  way  as  to  give  the  closest  possible 

approximation  to  the  tAvo  branches,  and  as  the  parabola  is  in  no  way  rendered 
more  complicated  by  a  value  of  fx  other  than  zero,  it  is  worth  while  to  determine 

this  best  possible  parabola.  We  shall  find  that,  while  in  general  the  shortest 

distance  between  the  parabola  and  the  curve  is  0  ix  ~  4),  for  one  and  only  one 
value  of  /x  it  is  0  iy\x). 
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Proceeding  as  in  the  last  section  we  find  that  tvr>j+yx~  2,  and  that  if 
w=  ±yx~h-\-z  then  z=0{l/x). 

It  follows  that 

y-cjc  -'^=  ±axh±yx-^+0{Hj;). 

Moreover,  if  (y  -  cjc  -  /3)-  =  d^x  +  /*, 

y-cx-^=±ax^±^  (fx/a)  ̂ -  ~  ̂  +  ''^  ( 1  /./••). 
If  therefore 

fi  =  2ay, 

the  ordinates  of  the  curve  and  the  parabola  difl'er  by  0  (l/.v),  while  for  all  other 
values  of  11  the  ordinates  differ  by  0  {x  ~  i).  It  follows  that  the  best  possible  repre- 

sentation of  these  branches  of  the  curve  by  a  parabola  is  afforded  by  the  parabola 

(y-cx-^y  =  a:Kv-^fi, 

where  ^  =  2ay. 

The  general  case.    The  following  theorem  covers  all  cases. 

Theorem  7  75.   General  curvilinear  asjrmptotes.    If  c  is  a  root  of 

(f>n{ht)  =  0 
to  which  no  rectilinear  asymptote  can  con'espond,  but  to  which  correspond  one  or 
more  real  bi-anches  of  the  curve 

<t>.,  (•'■,  // )  +  0.t - 1  i-^;  y )+...=  0 satisfying 

y  <^  ex, 

as  X  — >  4-  X  or  X  —>  -  00  as  the  case  may  be,  then  any  one  of  these  branches  takes 
the  form 

y==cx-\-dti'  h+  2  n^t-A^-0{t-^\ I       (=1         J 

where  p  is  a  positive  integer,  c?4=0,  and  t  is  determ,ined  in  one  of  the  following 
ways  : 

(1)  t^x^^      {q>p\ 

where  q  is  odd,  and  the  curve  has  one  real  branch  of  the  given  form  both  as 

X  — ►  4-  00  and  as  x  —^  —  00  ; 

(2)  t  =  x^'i      {q>p), 

where  q  is  even,,  and  the  curve  can  have  two  real  branches  of  the  given  form  as 

X  — >  +  QC  and  none  as  x  — ►  —  x  ; 

(3)  t^i^xyi'^        (q>p), 

where  q  is  even  and  the  curve  can  have  two  real  branches  of  the  given  form  as 
.r  — >  -  00  and  none  a«  a;  — ►  +  x  . 

The  corresponding  asymptote  is  of  course 

if  =  cx-{-dt^'\\+  '2,ait-'\  . I       i=i  J 
This  theorem  is  obviously  merely  a  natural  extension  of  the  fundamental 

existence  theorem,  on  the  lines  sketched  in  Chapter  VI,  especially  §§6-40, 
6-60.    The  details  may  be  left  to  the  reader. 
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NOTE  A 

A  PROPERTY  OF  DIFFERENTIAL  COEFFICIENTS 

111  pursuance  of  our  general  policy  we  define,  for  instance,  the  tangent  at 

P  {oj'q^  to  the  curve  y=f{x),  as  the  limit  of  the  chord  PQ  when  Q—^  P.  For 

this  purpose  we  require  merely  the  existence  of/'  {x^).  The  important  question 
then  arises  "when  does  the  chord  Q\Q'^  tend  to  the  tangent  at  P  as  Q\—^P 

and  Qi—^  PI"  Similar  questions  occur  in  connection  with  curvature.  [Theorems 
2-21,  3-23.] 

In  general,  of  coui-se,  a  more  stringent  condition  than  the  mere  existence 

of/'  (.^o)  is  required.  But  cases  of  geometrical  interest  occur  in  which  actually 
no  more  stringent  condition  is  required  for  two  moving  points  than  for  one. 

In  the  example  quoted,  if  ̂ i  — >  P  and  Q^—^P  from  opposite  sides,  then  the 

chord  QiQ'i  does  tend  to  the  tangent  at  P  provided  only/'  (^q)  exists. 
The  cases  that  occur  all  reduce  to  the  following  question :  "  When  can  it  he 

asserted  that  the  existence  of  f  (Xq)  implies  that 

as  .i'l,  .t;2  —>.%?"  The  question  is  answered  in  a  simple  manner  by  the  following 
theorem  which  it  is  convenient  to  state  and  prove  here. 

If  f  (0)  exists,  and  |a'i— .^'2!  **  never  small  compared  to  the  smaller  of 

Xi  and  ̂ 2*  then  f/^\  _  /-/^  \ 
■■'i'  V ''->/' (0).      (A) Xi  —  .^2 

OS  X'l,  X2  — >  0.    In  particular  if  x^  and  x^  have  always  opposite  signs  then  (A) 
IS  certainly  true. 

Suppose  for  simplicity  that/(0)=0.    Then  as  .r,  — ♦O,  by  definition, 

f{x,)_f{x,)-f{0) 

x^'~       x,-0      ~^-'    ̂   ̂' 

since/'  (0)  exists.    Therefore / {xx)=Xif'  (0) +0 (t^j).    Similarly, 

/W  =  -^2/'(0)  +  o(^2), 

and  therefore  fMzIJ^  =  f  (o)  +  0 {xj |  x^  -x^l}, 
Xi-  X2  '      ̂     '  i    /  I     1         -    *  5 

where  x  is  the  larger  of  |  Xi  \  and  |  ^^2 1  •    If  1^0 w,  as  Xi ,  X2  — >  0,  j  ^1  -  x^  \  >kx  for 

some  fixed  positive  value  of  k,  then  o{xl\xi-  X2\]  =  o{ljk)—^ 0,  and  therefore 
/(fiKA^)_^^.(0). 

X\-X2 

*  I.e.  there  exists  a  constant  fc,  independent  of  x^  and  x^,  such  that 

xx-  X2,\>k\xi\,     ]  .Ti  -  a;2 1  >  ̂-  j  .^2  1 . 
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If  in  particular  .Vi  and  X2  have  opposite  signs,  which  is  the  geometrically 

interesting  case,  then  |.^i-A'2l  >l^'i  l»  l^i-''^2|  >|^2h  ̂ ^^  extra  condition  is 

automatically  satisfied,  and  the  mere  existence  of  /'  (0)  is  sufficient  to  ensure 
that 

NOTE  B 

THE  REMAINDER  IN  TAYLOR'S  THEOREM 

We  have  made  use  in  Note  A  of  the  equation /(a-) =^/'(0)  +  o(a'),  or  more 
generally 

f{x)=f{0)+xf{0)-\-o{x\ 

as  equivalent  to  the  existence  of  f'{0).  Similar  equations  are  used  frequently 
in  this  tract  when  we  wish  to  avoid  unnecessary  assumptions,  for  such  equations 
just  contain  all  the  information  provided  by  the  hypotheses.  In  general  we 

can  obtain  an  0-  or  o-result  for  the  remainder  in  Taylor's  expansion  with  less 
assumptions  than  are  required  for  the  use  of  any  of  the  standard  forms  of 
remainder. 

For  example,  suppose  that  /(»)  (0)  exists.   This  is  equivalent  to  the  equation 

/(»-i)(^)=/(H-i)(o)+^/(")(0)+o(.r). 

Integrating  this  equation  from  0  to  x\  we  obtain,  by  L'Hospital's  theorem, 

/(n-2)(<p)=/(n-2)(0)+^/(«-l)(0)+^yy(«)(0)  +  o(^2). 

If  we  repeat  the  integration  n-2  times  more,  we  get 

in  other  words  we  have  proved  that 

Fo  r  this  o-result,  Rn  +  i  =  o  (^"),  the  ordy  hypothesis  required  is  the  existence  of 

/('')(0).  In  the  same  way  we  can  prove  that  for  the  O-result,  ̂ n  +  i  =  ̂(^""^^)> 
the  only  hypothesis  required  is  that  all  the  upper  and  lower  derivates  of  f'*){x) 
shoidd  he  hounded  at  x=0. 

To  obtain  a  result  at  least  as  good  as  either  the  o-result  or  the  O-result 

from,  for  example,  Lagrange's  remainder  form,  we  must  assume  that/('^'*"^)('^) 
exists  over  an  interval  containing  x=0. 
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